Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME

CENTRE

NUMBER

CANDIDATE NUMBER

PHYSICS

Paper 5 Practical Test

0625/51
May/June 2014 1 hour 15 minutes

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of the page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
Total	

This document consists of 11 printed pages and 1 blank page.

BLANK PAGE

1 In this experiment, you will investigate the motion of a mass hanging on a spring.
Carry out the following instructions, referring to Figs. 1.1 and 1.2. The spring has been set up for you.

Fig. 1.1

Fig. 1.2
(a) Measure and record the length l_{0} of the unstretched spring, in mm .
$l_{0}=$ \qquad mm [1]
(b) Suspend a mass of 300 g from the spring.
(i) Measure and record the new length l of the spring.

$$
l=
$$

(ii) Calculate the extension e of the spring, using the equation $e=\left(l-l_{0}\right)$.

$$
e=
$$

(iii) Calculate a value for the spring constant k using the equation $k=\frac{F}{e}$, where $F=3.0 \mathrm{~N}$. Include the appropriate unit.

$$
k=
$$

\qquad
(c) Adjust the position of the lower clamp so that the pin is level with the bottom of the mass when the mass is not moving. Pull the mass down a short distance and release it so that it oscillates up and down. Fig. 1.3 shows one complete oscillation.

Fig. 1.3
(i) Measure and record the time t taken for 10 complete oscillations.

$$
t=
$$

\qquad
(ii) Calculate the time T taken for one complete oscillation.

$$
T=
$$

(d) Replace the mass of 300 g with a mass of 500 g . Repeat the steps in part (c).

$$
t=
$$

\qquad

$$
T=
$$

(e) A student suggests that the time T taken for one oscillation should not be affected by the change in mass.

State whether your results support this suggestion. Justify your answer by reference to your results.
statement \qquad
justification \qquad
\qquad
\qquad
(f) Explain briefly how you can avoid a line-of-sight (parallax) error when measuring the length of the spring. You may draw a diagram.
\qquad
\qquad
\qquad

2 In this experiment, you will investigate the cooling of a thermometer bulb under different conditions. Carry out the following instructions, referring to Figs. 2.1 and 2.2.

Fig. 2.1

Fig. 2.2
(a) Place the thermometer in the beaker of hot water, as shown in Fig. 2.1.
(i) When the thermometer reading stops rising, record the temperature θ_{H} of the hot water.

$$
\begin{equation*}
\theta_{\mathrm{H}}= \tag{1}
\end{equation*}
$$

(ii) Remove the thermometer from the beaker of hot water. Immediately start the stopclock.
(iii) After 30 s , measure the temperature θ shown on the thermometer. Record in Table 2.1 the time $t=30 \mathrm{~s}$ and the temperature reading.
(iv) Continue recording the time and temperature readings every 30 s until you have six sets of readings.

Table 2.1

	without insulation	with insulation
$t /$	$\theta /$	$\theta /$

(b) Complete the column headings in the table.
(c) Replace the thermometer in the beaker of hot water and record its temperature.

$$
\begin{equation*}
\theta_{\mathrm{H}}= \tag{1}
\end{equation*}
$$

(d) (i) Remove the thermometer from the beaker of hot water and place it in the beaker containing cotton wool. Immediately start the stopclock. Ensure that the thermometer bulb is completely surrounded by cotton wool as shown in Fig. 2.2.
(ii) After 30 s , measure the temperature θ shown on the thermometer. Record the temperature reading in Table 2.1.
(iii) Continue recording the temperature every 30 s until you have six readings.
(e) State whether the cotton wool insulation increases, decreases, or has no significant effect on the rate of cooling of the thermometer bulb, compared with the rate of cooling with no insulation. Justify your answer by reference to your results.
statement \qquad
justification \qquad
\qquad
(f) Suggest one condition that should be kept constant when this experiment is repeated.
[Total: 10]

3 In this experiment, you will investigate the resistance of a lamp filament.
Carry out the following instructions, referring to Fig. 3.1.

Fig. 3.1
(a) (i) Switch on. Connect the sliding contact \mathbf{S} to point \mathbf{X} in the circuit. Measure and record the potential difference V across the lamp and the current I in the circuit. Switch off.
\qquad

$$
I=
$$

(ii) Calculate the resistance R of the lamp filament using the equation $R=\frac{V}{I}$.

$$
\begin{equation*}
R= \tag{1}
\end{equation*}
$$

(b) (i) Switch on. Connect the sliding contact \mathbf{S} to point \mathbf{Y} in the circuit. Measure and record the potential difference V across the lamp and the current I in the circuit. Switch off.

$$
V=
$$

\qquad

$$
I=
$$

\qquad
(ii) Calculate the resistance R of the lamp filament using the equation $R=\frac{V}{I}$.

$$
R=
$$

\qquad
(c) (i) Switch on. Connect the sliding contact \mathbf{S} to point \mathbf{Z} in the circuit. Measure and record the potential difference V across the lamp and the current I in the circuit. Switch off.

$$
\begin{aligned}
& V=. ~
\end{aligned}
$$

(ii) Calculate the resistance R of the lamp filament using the equation $R=\frac{V}{I}$.

$$
\begin{equation*}
R= \tag{1}
\end{equation*}
$$

(d) Comment on the effect of increasing the current I on the resistance of the lamp filament.

An increase in the current I in the lamp filament \qquad
\qquad
(e) Suggest a practical reason why, if you were to repeat this experiment, the repeat measurements might be slightly different from the results you obtained.
\qquad
\qquad
(f) A student carries out this experiment using a different lamp. He takes readings using various lengths of resistance wire in the circuit. He plots a graph of V / V against I / A.

Fig. 3.2 is a sketch of the graph.

Fig. 3.2
State whether the graph shows that the resistance increases, decreases or remains constant as the current increases. Justify your conclusion by reference to the graph.

The resistance \qquad
justification \qquad
\qquad

4 In this experiment, you will investigate reflection using a plane mirror.
Carry out the following instructions, referring to Fig. 4.1.

Fig. 4.1
(a) Draw a line 10 cm long near the middle of the ray-trace sheet. Label the line MR. Draw a normal to this line that passes through its centre. Label the normal NL. Label the point at which NL crosses MR with the letter B.
(b) Draw a line 8 cm long from \mathbf{B} at an angle of incidence $i=30^{\circ}$ to the normal, below MR and to the left of the normal. Label the end of this line \mathbf{A}.
(c) Place two pins P_{1} and P_{2} on line $A B$ a suitable distance apart.
(d) Place the reflecting face of the mirror vertically on the line MR.
(e) View the images of pins P_{1} and P_{2} from the direction indicated by the eye in Fig. 4.1. Place two pins P_{3} and P_{4} some distance apart, so that pins P_{3} and P_{4}, and the images of P_{2} and P_{1}, all appear exactly one behind the other. Label the positions of P_{3} and P_{4}.
(f) Remove pins P_{3} and P_{4} and the mirror. Draw the line joining the positions of P_{3} and P_{4}. Extend the line until it meets NL.
(g) Measure, and record in Table 4.1, the angle α between NL and the line joining the positions of P_{3} and P_{4}. At this stage the angle θ between the mirror and line MR is 0° as shown in the table.
(h) Do not move pins P_{1} and P_{2}. Draw lines at angles $\theta=10^{\circ}, 20^{\circ}, 30^{\circ}$ and 40° to MR, one of which is shown in Fig. 4.1. Repeat steps (d) to (\mathbf{g}), placing the mirror on each of the new lines in turn, so that you obtain five sets of readings.

Table 4.1

$\theta /{ }^{\circ}$	$\alpha /{ }^{\circ}$
0	
10	
20	
30	
40	

(i) Plot a graph of $\alpha /{ }^{\circ}(y$-axis $)$ against $\theta /{ }^{\circ}(x$-axis $)$.

Tie your ray-trace sheet into this Booklet between pages 10 and 11.
[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

