

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

PHYSICS 0625/42

Paper 4 Extended Theory

May/June 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer	Marks
1(a)(i)	(a scalar) does not have direction	B1
1(a)(ii)	energy and temperature	B1
1(b)	straight line and non-zero gradient	B1
1(c)	scale ≥ 1 cm: 1 m / s	B1
	two arrows/lines and correct resultant OR rectangle and correct diagonal (towards bottom left)	B1
	7.2→7.6 m/s	B1
	$26.0^{\circ} \leqslant$ angle below E–W \leqslant 30.5° OR $239.5^{\circ} \leqslant$ bearing \leqslant 244°	B1
	Total:	7

Question	Answer	Marks
2(a)	Column 1 Box 3 mass same	B1
	Column 2 Box 4 weight 1/6	B1
	Column 3 Box 3 deceleration same	B1
2(b)	P=F/A in any form or (F=) PA	C1
	$(F_1 = 500\ 000 \times 0.00065 =)\ 330\ (N)$	C1
	$F_1d_1 = F_2d_2$ in any form or F_1d_1/d_2	C1
	$(F_2 = 325 \times 7/24 =) 95 N$	A1
	Total:	7

Question	Answer	Marks
3(a)	'force and time'	B1
3(b)(i)1.	(momentum =) mv	C1
	(momentum = 2.4×3 =) 7.2 kg m/s OR Ns	A1
3(b)(i)2.	$(m_A + m_B)v = m_A x 3 OR$ momentum conserved	C1
	(v = 7.2/3.6 =) 2.0 m/s	A1
3(b)(i)3.	(impulse / Ft =) $m(v - u)$	C1
	(impulse / Ft = $1.2 \times (2-0)$ =) 2.4 kg m/s OR Ns	A1
3(b)(ii)	thermal/sound energy (produced at collision/lost)	B1
	Total:	8

Question	Answer	Marks
4(a)	impulse/change of momentum (of molecules) during collision	B1
	{force (to change momentum) of molecules OR molecules hitting walls} (causes pressure)	B1
4(b)	more (frequent) collisions with walls	B1
	greater (total) force (caused by molecules) OR reduced area OR grater (rate) change of momentum (of molecules)	В1
4(c)	$p_1V_1 = p_2V_2$ in any form OR ($p_2 = p_1V_1/V_2$	C1
	$(p_2 = 500 \times 1.1 \times 10^5/200 =) 2.8 \times 10^5 Pa$	A1
	Total:	6

Question	Answer	Marks
5(a)(i)	$E = mc(\Delta)T$ in any form or $(E=) mc(\Delta)T$	C1
	(E= 0.6 × 4200 × 80 =) 200 000 (J)	C1
	E = VIt in any form or (t=)E/VI	C1
	(t= 201 600 / (12 × 240) =) 70 s	A1
5(a)(ii)	no (thermal) energy losses	B1
5(b)	put (hot) water in bottle AND place thermometers/measure temperatures each side of (centre of) bottle	M1
	put thermometers near bottle	A1
	good detail e.g. thermometers equal distances from bottle thermometer bulbs same height record temperatures regularly	A1
	thermometer near black has higher reading/rises faster/larger temperature difference or reverse argument	A1
	Total:	9

Question	Answer	Marks
6(a)(i)	3.4 cm	B1
6(a)(ii)	30 cm	B1
6(b)	$v=f\lambda$ in any form or $(f=)v/\lambda$	C1
	(f = 8.0/2.5=) 3.2 Hz	A1
6(c)(i)	3 crests straight AND some spreading out	B1
	2 wavelengths same as original	B1
6(c)(ii)1.	(wavelength) increases/ longer AND (because wave) travels further in same/periodic time or because wave has higher speed /moves faster	B1
6(c)(i)2.	More diffraction/spreading/deflection out/more curved OR no/smaller straight part in centre	B1
	Total:	8

Question	Answer	Marks
7(a)(i)	(n =) speed in air / speed in liquid	C1
	$(n = 3 \times 10^8 / 2.0 \times 10^8) = 1.5$	A1
7(a)(ii)	n = sin i / sin r in any form	C1
	$(r = \sin^{-1} (\sin 40 / 1.5) =) 25^{\circ}$	A1
7(b)	one ray from object either with refraction at surface OR vertical	M1
	another ray from object, must have refraction at surface away from normal	A1
	both rays extended back to meet in the liquid AND intersection labelled image/ I	B1
	Total:	7

Question	Answer	Marks
8(a)(i)	P=VI in any form OR (I =) P/V	C1
	(I = 9.0 / 6.0 =) 1.5 A	A1
8(a)(ii)	V=IR in any form OR (R =) V/I OR P= V^2/R in any form OR (R =) V^2/P	C1
	$(R = 6.0/1.5 =) 4.0 \Omega$ or $(R = 36/9.0 =) 4.0 \Omega$	A1
8(b)(i)	resistance of wire is greater (than at X) OR current is less OR p.d. across lamp is less	B1
8(b)(ii)	(for normal brightness of lamp,) resistance of circuit (= $12/1.5$) = 8.0Ω	C1
	resistance of wire = $(8.0 - 4.0 =) = 4.0 \Omega$	C1
	(distance AX = $1.0 \times 4/5$ =) 0.80 m OR (sliding contact is) 0.80 m (from A)	A 1
	OR V across AX = 6.0 V	(C1)
	resistance of wire = (6/current from a(i) =) 4.0 Ω	(C1)
	(distance AX = $1.0 \times 4/5$ =) 0.80 m OR (sliding contact is) 0.80 m (from A)	(A1)
	Total:	8

Question	Answer	Marks
9(a)(i)	arrow left to right and horizontal, labelled (M)	B1
9(a)(ii)	if M L to R arrow downwards, labelled (F) if M R to L arrow upwards, labelled (F)	B1
9(b)	force reversed/opposite of 9(a)(i)	B1
9(c)(i)	one ring (roughly circular) centred on wire	M1
	(at least) three rings (roughly circular)	A 1
	field lines clockwise (as drawn)	B1
9(c)(ii)	(magnetic field is) stronger or field lines closer together	B1
9(d)	(vertically) downwards	B1
	Total:	8

Question	Answer	Marks
10(a)	2→4 arrows outwards at any angle	B1
10(b)	NOR	B1
10(c)(i)	logic circuit with 2 inputs & 1 output. Circuit contains at least 2 acceptable gates. No other gates used	M1
	logic circuit that produces correct output	A 1
10(c)(ii)	work from input to output, any intermediate point labelled X following acceptable gate(s) only with truth table correct for circuit drawn	B1
	Total:	5

Question	Answer	Marks
11(a)	(some) β /beta/radiation would penetrate gloves/reach other body parts (so insufficient protection)	B1
	middle: any path to the left within 45° of horizontal	B1
	bottom: path to the right and deflected down ending in a straight line	B1
11(b)	radiation from background/rock/air/outer space/cosmic rays	B1
	random variation owtte.	B1
11(c)	thick gloves would stop α/alpha (so helpful)	B1
	(some) β /beta/radiation would penetrate gloves/reach other body parts (so insufficient protection)	B1
	Total:	7