Centre Number	Candidate Number	Name	2.0
Inte	CAMBRIDGE INTER rnational General Ce	NATIONAL EXAMINATIONS ertificate of Secondary Educat	ion a Cambrid
COMBINED CO-ORDINA	SCIENCE TED SCIENCES	0653/06,	0654/06
Paper 6 Alte	rnative to Practical Te	est October/Nov	ember 2003
Candidates ans No Additional M	wer on the Question Pap laterials are required	er.	1 hour
EAD THESE INSTRU	CTIONS FIRST		
nte in dank blde of bld ou may use a soft pen o not use staples, pap nswer all questions. the end of the examination of the stamination of the stamination of marks is	nation, fasten all your wo given in brackets [] at t	rk securely together. he end of each question or part que	stion.
			For Examiner's Use
			For Examiner's Use
	a label look at the		For Examiner's Use 1 2 3
/ou have been given a tails. If any details are	a label, look at the e incorrect or ur correct details		For Examiner's Use1234
γou have been given a tails. If any details are ssing, please fill in you the space given at the	a label, look at the e incorrect or ur correct details e top of this page.		For Examiner's Use12345
you have been given a tails. If any details are ssing, please fill in you the space given at the ick your personal labe ovided.	a label, look at the e incorrect or ur correct details e top of this page. el here, if		For Examiner's Use12345561

www.papacambridge.com 1 A student did an experiment to find if alcohol has an effect on the rate of heartbeat fleas. The water fleas are so small that they have to be studied using a microscope. heart can be seen easily in the place shown in Fig. 1.1.

2

Fig. 1.1

- He placed a water flea onto a microscope slide and counted the number of heart beats • in 15 seconds.
- Using a pipette he removed the water surrounding the flea and replaced it with 1% alcohol.
- He counted the new rate for 15 seconds.
- He repeated this procedure with a different flea.
- He then did the experiment with two more fleas in alcohol solutions of different • concentrations shown in the table.
- He multiplied each reading by four to give the heart rate per minute.
- He recorded his results in the table, Fig. 1.2.

alcohol concentration/%	first reading of heart rate/beats per minute	second reading of heart rate / beats per minute	average heart rate/beats per minute
0	204	216	
1	188	196	
2	168	180	
3	140	152	
4	96	88	
5	44	48	
6	36	32	
7	20	28	
8	24	12	

Fig. 1.2

(a) Complete the table by calculating the average heart rate for each alcohol concentration.

[2]

alcohol concentration/%

average heart rate/beats per minute

[3]

		www.xtrapapers.co	m
		4	
(c)	Des	scribe how alcohol affected the heart rate of the water fleas,	
	(i)	at alcohol concentration between 0% and 2%,	
		So. Co.	
			ľ
	(ii)	at alcohol concentrations between 3% and 5%.	٦
			1
		[2]	
(d)	The drin	e nervous system controls the heart rate in both fleas and humans. Suggest how king alcohol affects the speed of response of the human nervous system.	
		[1]	
(e)	(i)	Suggest one possible source of error in the experiment.	
	(ii)	Suggest one way in which the experiment could be improved.	
		[2]	

5

Question 2 can be found on page 6

www.papacambridge.com 2 Three students each set up an experiment using the apparatus shown in the Fig. 2.1.

Fig. 2.1

- Each of the 100 cm^3 flasks contained a small mass of one of the metals **X**, **Y** or **Z** with • 5 cm³ of water.
- At first, all the syringes were set at the 25 cm³ mark.
- The flasks were left for one week.
- The students recorded their results in the table, Fig. 2.3.
- (a) Fig. 2.2 shows the scales of the syringes after one week.

metal \mathbf{Z} + 5 cm³ water

Fig. 2.2

Reco	ord the readings of the syri	7 nges in the table, Fig. 2	2.3.	apers.com For Examiner's Use
experiment number	flask contained	syringe reading on day 1 / cm ³	syringe reading after one week/cm ³	inde c
1	metal X + 5 cm ³ of water	25		913
2	metal $\mathbf{Y} + 5 \mathrm{cm}^3$ of water	25		
3	metal \mathbf{Z} + 5 cm ³ of water	25		

[3]

Fig. 2.3

(b) Suggest the names of the metals used in the experiments 1-3. Choose from the following list of metals. (there may be more than one correct answer each time)

	cal	cium	coppe	er iron	magnesium	zinc
	Exp	olain yo	ur answ	vers.		
	(i)	Metal	X could	l be		
		explai	nation .			
						[1]
	(ii)	Metal	Y could	be		
		explai	nation .			
						[2]
	(iii)	Metal	Z could	l be		
		explai	nation .			
						[2]
(c)	Nar	ne the	gas ma	de by the	reaction in expe	eriment 3.
						[1]

- 3 A student did an experiment to investigate the solubility of potassium nitrate in different temperatures.
 - The student placed 7.0 g of potassium nitrate and 4.0 cm³ of water in a large test-tube.
 - He heated the test-tube in a water bath until all the crystals had dissolved. •
 - He allowed the test-tube to cool and gently stirred the contents with the thermometer. •
- Www.PapaCambridge.com When he saw small shiny crystals in the solution, he recorded the temperature in the results table, Fig. 3.2.
 - He added 1.0 cm^3 of water to the test-tube and stirred the mixture.

Then the steps shown above were repeated to find another temperature at which crystals began to appear.

He added 1.0 cm³ portions of water to the tube until the total volume of water was 12.0 cm³. Each time he found the temperature at which crystals began to appear.

Fig. 3.1

(a) Read the thermometers in Fig. 3.1 and record the results in the table, Fig. 3.2.

(a) Read the	e thermometers in	9 Fig. 3.1 and reco	ord the results in the table	e, Fig. 3.2.	rs.cc
experiment number	total volume of water/cm ³	mass of potassium nitrate/g	mass of potassium nitrate per 100 cm ³ of water/g	temperature / °C	ne.col.
1	4.0	7.0	175.0	78	
2	5.0	7.0			
3	6.0	7.0	117.0		
4	7.0	7.0	100.0		
5	8.0	7.0	87.5	50	
6	12.0	7.0	58.3	38	

Fig. 3.2

(b) Complete Fig. 3.2 by calculating the missing value for the mass of potassium nitrate in 100 g water. [1]

[3]

9

Fig. 3.3

	www.xtrapa	apers.com
	11 2.02	For Examiner's
(d)	A point P has already been marked on the graph grid. Study the graph a complete the following sentence about point P .	Use
	The point P represents a solution ofg potassium nitrate ing of	1990
	water at a temperature of°C. [1]	Com
(e)	The student wants to get solid potassium nitrate from the solution. Explain carefully how he can do this.	
	[2]	

Www.papacambridge.com 4 This question is about heat loss in animals. During cold weather some animal together (huddle) to keep warm. A student did an experiment to find how effective such huddling is.

She used test-tubes of hot water to represent the animals.

- She half-filled eight test-tubes with hot water. •
- She used an elastic band to make a bundle of seven tubes with test-tube A surrounded • by six other test-tubes.
- She put a thermometer into test-tube **A**. .
- She also put a thermometer into the eighth test-tube, **B**, which she kept separate.
- She then put the tubes in beakers as shown in the diagram, Fig. 4.1.
- Then she took the initial temperature of the water in both test-tubes. She continued to take the temperature every minute for ten minutes.

58 55 53 reading (ii) 42 51 49 47 46 44

	www.xtrap	papers.cor
	14	For Examiner's
(c)	Which test-tube, A or B , took longer to cool down?	Use
(d)	Is huddling effective? Use your results and your knowledge of heat transfer to explain your answer.	indge.com
	[3]	
(e)	Suggest two ways in which you could improve the accuracy of the experiment.	
	[2]	

15

e. Subs 5 A student is given substance X, which is a mixture of a salt and a metal oxide. Subs is a black solid.

She does the following tests and writes her observations.

(a) Complete the table, Fig. 5.1, by writing the conclusions.

test	observation	conclusion
 To a small amount of X, add 5 cm³ dilute nitric acid and warm. 	blue solution formed	[1]
2. Warm a portion of X with 15 cm^3 water in a large test-tube. Filter the mixture and use 2 cm^3 of the filtrate for each of the tests 3–5 .	black residue in filter paper and a colourless filtrate	
 To 2 cm³ of the filtrate from test 2, 5 cm³ hydrochloric acid was added. 	colourless solution, no bubbling seen	[1]
 4. To 2 cm³ of the filtrate from test 2, a few drops of nitric acid were added, followed by silver nitrate solution. 	white precipitate	[1]
 To 2 cm³ of the filtrate from test 2, about 1 cm³ aqueous sodium hydroxide was added. The mixture was warmed. 	pungent-smelling gas given off, turns red litmus blue	[1]
6. About 10 cm ³ warm dilute nitric acid was poured on to the residue from test 2 . The filtrate was collected.	blue solution formed	

Fig. 5.1

(b) Suggest another test the student might use to confirm the presence of the gas from test 5. What result can she expect for your test?

test	 	 	 	
result	 	 	 	[2]

 16
 For Examinar's Use

 (c) The student thinks that the filtrate from test 6 might contain copper ions. S adding ammonia solution to some of the filtrate.
 Image: Comparison of the filtrate from test 6 might contain copper ions. S adding ammonia solution to some of the filtrate.

 (i) What will she see when she adds a few drops of ammonia solution, if copper is present?
 Image: Comparison of the filtrate from test 6 might contain copper is present?

 (ii) What will she see when she adds an excess of ammonia solution, if copper is present?
 [3]

 (d) Suggest what substances are present in substance X.
 [2]

1000 metres

Fig. 6.1

- A microphone on the gun picks up the sound. It sends a signal to a radio transmitter. This signal is sent to the radio receiver at point **Y**. The receiver sends **input A** to a cathode ray oscilloscope (c.r.o.).
- A dish at point **Y** reflects the sound to a microphone in the dish. This sends **input B** to the c.r.o.
- The sound of the gun travels through the air. When the second student hears the sound of the gun at point **Y**, he presses a switch to send **input C** to the c.r.o.
- (a) The inputs to the c.r.o. are pulses of energy.State how the energy travels from point X to point Y in each case.
 - (i) input A
 - (ii) input B[2]
- (b) Explain why the microphone at point **Y** needs a reflector dish but the microphone at point **X** does not need one.

.....[1]

avels from point X to A Part of Examiner's Use
avels from point X to A Cannut Use
"nbridge.com
m/s [1]
m/s [1] more reliable? Explain your
nore reliable?
r

BLANK PAGE

20