UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the June 2004 question papers

0653 COMBINED SCIENCE				
0653/01	Paper 1 (Multiple Choice), maximum raw mark 40			
0653/02	Paper 2 (Core), maximum raw mark 80			
0653/03	Paper 3 (Extended), maximum raw mark 80			
0653/05	Paper 5 (Practical), maximum raw mark 30			
0653/06	Paper 6 (Alternative to Practical), maximum raw mark 60			

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

2004

E F

Grade thresholds taken for Syllabus 0653 (Combined Science) in the June 2004 examination.

	maximum		minimum mark required for grade:			
	mark available	А	С	E	F	
Component 1	40	35	27	19	14	
Component 2	80	-	42	26	19	
Component 3	80	55	32	20	16	
Component 5	30	22	15	11	9	
Component 6	60	48	39	25	17	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

June 2004

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0653/01

COMBINED SCIENCE Paper 1 (Multiple Choice)

Page 1			Scheme	Syll
		COMBINED SCIE	NCE – JUNE 2004	065
	Question Number	Key	Question Number	Sylk 065 Key B A A
	1	С	21	В
	2	Α	22	Α
	3	D	23	Α
	4	D	24	D
	5	В	25	Α
	6	Α	26	D
	7	В	27	С
	8	С	28	D
	9	D	29	D
	10	С	30	D
	11	Α	31	С
	12	С	32	Α
	13	D	33	С
	14	Α	34	С
	15	В	35	D
	16	В	36	Α
	17	С	37	С
	18	Α	38	Α
	19	D	39	Α
	20	С	40	D

TOTAL 40

June 2004

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/02

COMBINED SCIENCE Paper 2 (Core)

Total 7 marks

Р	age 1	Mark Scheme	Sylle
_		COMBINED SCIENCE – JUNE 2004	0653
1(a)	Q; P·		Sylin A. Day ner 0653 ABBACAMBARITAGE COM
	P; Q;		[3]
(b)(i)	(so)	ontains other gases / substances / air not pure oxygen; oxygen less concentrated /diluted by other gases / onable reference to collisions / reaction rate lower;	[2]
(ii)		ogen + oxygen → water; ct → hydrogen oxide)	[1]
2(a)	С	ontains DNA ; ontains inherited information / genes;	Total 6 marks
	C	ontrols the activities of the cell;	[2] max
(b)	c c n	rawing with two outer lines (not one as for animal cell); ell membrane and cell wall correctly labelled (both required); hloroplast (obviously) in cytoplasm and labelled; ucleus in cytoplasm and labelled; acuole in cytoplasm and labelled;	
	·	acacio in cytopiacin ana labolica ,	[4] max
(c)	W W	sun)light energy is always falling on Earth / idea that sunlight ron't run out; rood formed as a result of photosynthesis / energy in wood	
	С	omes from sunlight ;	[2]
			Total 8 marks
3(a)(i)	(just	over) 2 (km/h) (accept 2 to 2.4);	[1]
(ii)	15 (k	xm/h);	[1]
(b)		ic/ movement; rical (accept electric and electricity);	[2]
(c)(i)	noise	e / eyesore / only effective over a certain range of wind speed	s;
(:::\			[1]
(ii)		gas (reject crude oil);	[1]
(iii)	carb	on / hydrogen;	[1]

Page 2	Mark Scheme	Syln
	COMBINED SCIENCE – JUNE 2004	0653

Page 2	Mark Scheme Sy	ner
	COMBINED SCIENCE – JUNE 2004	0653 70 ₈₀
		TOPH
l(a)	carbon dioxide / CO ₂ ; limewater / calcium hydroxide solution;	653 ADACAM
o)	more than one type of atom / element;	
<i>.</i> ,	joined / bonded;	
	made of molecules containing different elements / types of atom;	
		[2] max
c)(i)	H ₂ SO ₄ ;	[1]
(ii)	→ sodium sulphate; + carbon dioxide; + water; (products)	[3]
(iii)	no more effervescence / other correct;	[1]
iv)	dangerously explosive / owtte	[1]
	Tot	al 10 marks
(a)(i)	the more cigarettes smoked the greater the percentage of babies	
- ()(-)	with low birthweight; effect greatest between 0 and 15 (cigarettes per day);	[2]
ii)	(no) they only show there is a relationship; not that one causes the other; some low birth weight born to non-smokers;	
	other argument ;	[2] max
b)(ii)	(via) placenta ; by diffusion ;	_[2] max
	from mother's blood ;	[3]
c)	paralyses / stops, cilia; which allows mucus to build up in, lungs / bronchi; and allows bacteria to get into the, lungs /bronchi; bacteria breed in the mucus;	
	bacteria breed in the mucus ,	[2] max

Total 9 marks

Page 3	Mark Scheme	Sylin
	COMBINED SCIENCE – JUNE 2004	0653

Page 3 Mark Scheme COMBINED SCIENCE – JUNE 2004	Sylin
COMBINED SCIENCE - JUNE 2004	0653
	Sylh 19 per 0653 (1) [1] [1]
) gamma;	[1]
gamma;	[1]
X – rays;	[1]
radiowaves / microwaves;	[1]
distance = speed x time / d = s x t / other sensible symb $300\ 000\ 000\ x\ 0.00004 \div 2;$ = $6000(m)$; (only lose one mark if all correct except no division by 2	[3]
energy is lost (as signal travels); so less energy enters the receiver than was sent out; signal scattered / not all reflected back;	[2]
(strips) reflect microwaves / radar signal; produce false image in addition to the plane's image / or	wtte; [1] max
wavelength correctly labelled; (penalise careless indication of wavelength)	[1]
amplitude correctly labelled;	[1]
10 waves (pass a point) per second;	[1]
	Total 13 marks
two from malleable, ductile, good conductor of electricity good conductor of heat, high density;; (must indicate that metals tend to these properties or los	[2]
<u>heat</u> energy given out;	[1]
hydrogen; magnesium oxide;	[2]
ionic / electrovalent; covalent;	[2]
unreactive / doesn't corrode / react with food; (reject references to rusting)	[1]
(reject rejerences to rustino)	

Total 10 marks

. ugo i	a.r. conomo oyna	N. N.
	COMBINED SCIENCE – JUNE 2004 06	53 Page 1
8(a)	A - aorta ; B - pulmonary vein ; C - right atrium / auricle;	STACANN [3]
(b)	valve will not close; nothing to stop blood flowing backwards / the wrong way; back into (left) atrium;	[2] max
(c)(i)	in the lungs / alveoli ; oxygen diffuses (from air into blood) /oxygen combines with haemoglobin ;	
		[2]
(ii)	oxygen is needed for respiration; to provide energy; (muscles need) a lot of oxygen when exercise is done; lack of oxygen may cause anaerobic respiration / formation of lactic muscle cramps / pain;	acid; [2] max
	Total	9 marks
9(a)	weight is a force depending upon gravity; mass depends on the amount of matter in an object;	[2]
(b)	(high voltage means) lower current; reduces energy losses;	[2]
(c)	sound waves need a medium to travel / move via vibration of particl no matter in a vacuum / nothing to vibrate;	es; [2]
(d)	(some) beta radiation can travel through metal; thickness controls the amount of radiation passing through / owtte	[0]

Mark Scheme

Page 4

Total 8 marks

[2]

June 2004

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/03

COMBINED SCIENCE Paper 3 (Extended)

Pag	ge 1 Mark Scheme	Syln ner 0653
	COMBINED SCIENCE – JUNE 2004	0653
1(a)(i)	(compound) containing carbon and hydrogen ; only ;	Syln A. D. Der 0653 OG
		36'C
(ii)	air / oxygen, limited ;	
	incomplete combustion ;	•
	soot / carbon, produced <i>or</i> black material is soot ;	[2] max
(iii)	combustion / fire, needs, oxygen / air ;	
	foam blocks air from fire ;	[2]
(b)(i)	$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O;$	
	lose one mark for each error	[2]
(ii)	equal numbers of each type of <u>atom</u> on both sides;	[1]
(iii)	B on any bond on LHS ;	[1]
(iv)	M on any bond on RHS ;	[1] Total 11 marks
2(a)	(lake Y)	
` '	more species present;	[1]
(b)(i)	higher pH in lake Y / pH closer to neutral /less acidic / higher	
	species diversity in lake Y ;	
	not pH in Y is more alkaline	[1]
(ii)	acid neutralised by limestone / acid reacts with limestone ;	[1]
(c)	combustion / burning ;	
	correct reference to sulphur oxides;	
	which are acidic ;	
	ignore refs to acid rain	[2] max
(d)	reduces photosynthesis ;	
	less production / fewer producers / fewer plants / less food produced;	
	less food for, herbivores / consumers / animals ;	
	not 'organisms' or 'creatures'	[3]
		Total 8 marks

Page 2	Mark Scheme	Syll
	COMBINED SCIENCE – JUNE 2004	0653

3 (a)(i)	work = force x distance <i>or</i> work = weight x distance ; 1600 x 2 = 3200 J; <i>allow Nm</i>	Tidde co.
(ii)	power = work ÷ time or power = energy ÷ time;	
	= $3200 \div 0.5 = 6400 \text{ W}$; allow J/s	[2]
(b)(i)	(gravitational) potential (energy);	[1]
(ii)	kinetic;	[1]
		Total 6 marks
4(a)	(chlorine is) harmful to humans ;	
	not 'dangerous' allow 'dangerous to humans'	
	not 'chlorine produces a harmful gas'	[1]
(b)(i)	chlorine is more reactive than iodine / chlorine displaces iodine /	
	chlorine oxidises iodide ;	[1]
(ii)	the darker the colour the more iodine produced;	
	the more iodine produced the more chlorine there was in the bleach;	
	allow one mark for darker brown meaning more chlorine	[2]
(c)(i)	one shared pair ;	
	all other outer electrons correct;	
	ignore inner shells	[2]
(ii)	covalent;	[1]

Total 7 marks

trapapers.com

Pag	ge 3	Mark Scheme	Sylin
		COMBINED SCIENCE – JUNE 2004	0653
5(a)(i)	AA;		Cambridge
(ii)		AA and Aa crossed with aa ; etes shown correctly in one diagram ;	S. COM
	•	ring shown correctly in one diagram;	

(ii) both AA and Aa crossed with aa; gametes shown correctly in one diagram; offspring shown correctly in one diagram; stated or highlighted that Aa parent will produce some low vitamin C offspring;

if many other crosses shown, mark one correct one, but do not give

1st mark

(b) yes (no mark)

> 1 (asexual reproduction) (from AA or Aa) produces identical offspring;

2 genetically identical / clones;

3 so he can use either AA or Aa as parents / can also use Aa;

4 sexual reproduction, will produce variable offspring / may produce aa;

5 he may get more plants more quickly using asexual reproduction;

[2] max

[4]

needed for, making collagen / strong gums / healthy skin / wound (c) healing /immunity;

lack causes scurvy;

[2] **Total 9 marks**

	COMBINED SCIENCE – JUNE 2004	0653
6(a)	solid - particles touching and regularly arranged; must use sam	e Carry
	symbols	Office
	gas - no more than six particles in the box, widely separated ;	e Dacambridge Co
(b)(i)	to allow for expansion ;	
	in high temperatures ;	
	avoids damage to bridge ;	[2] max
(ii)	time = distance ÷ speed ;	
	$50 \div 20 = 2.5 \text{ seconds}$;	[2]
(c)(i)	poor conductor / good insulator ;	[1]
(ii)	reference to radiation ;	
	black surfaces absorb heat (radiation);	
	white surfaces reflect heat (radiation);	
	if answer given in terms of light, allow first marking point only	[2] max
(iii)	reference to convection;	
	cold air denser than warm air ;	
	cold air (from freezer) sinks / warm air rises ;	[2] max

Mark Scheme

Page 4

Total 11 marks

Pa	e 5 Mark Scheme Sylla Sel	-
	COMBINED SCIENCE – JUNE 2004 0653	
'(a)	N_2 ;	
	O_2	On
	N ₂ ; O ₂ 78 to 80 % and 20 to 22 %;	Se.C
b)(i)	1 <u>push</u> air from one syringe into the other ;	
	2 several times / back and forth ;	Ì
	3 until the volume of air shows no further change;	
	4 allow apparatus to cool ;	
	5 percentage of oxygen is the decrease in volume / correct ref to	
	volume decrease ;	[3] max
ii)	2, 6 for oxygen atom ;	
	2, 8 for oxide ion;	
	if inner shells incorrect, allow one mark	[2]
iii)	2 - ;	[1]
iv)	atom gains electrons ;	[1]
	Total 1	0 marks
B(a)	water moves out of the cells ;	
	cells shrink (<i>not</i> plasmolyse) ;	[2]
b)(i)	insulin ;	
	secreted by pancreas ;	
	causes liver to, take up / use, more glucose ;	[3]
ii)	homeostasis ;	[1]
c)	starch (molecules) broken down / digested / changed, to sugar /	
	glucose;	
	by amylase / carbohydrase ;	
	glucose / sugar, absorbed into the blood ;	

in the small intestine / ileum;

through villi;

Total 9 marks

[3] max

ktrapapers.com

Pa	ige 6	Mark Scheme	Sylin
		COMBINED SCIENCE – JUNE 200	4 0653
			S.
9(a)	CD is 3 V	;	Mb.
	FG is 6 V	•	ag .
	max 1 if r	o units	3.69
			177
(b)	four symb	ols present and correct :	

(b) four symbols present and correct; variable resistor in series with motor;

motor in parallel with lamp;

place 2 Ω and 4 Ω ; (c)(i)

> in series; [2]

(ii) place 2 Ω and 2 Ω ;

> [2] in parallel

> > **Total 9 marks**

[3]

June 2004

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 0653/05

COMBINED SCIENCE Practical

Page 1		e 1	Mark Scheme	Sylin	per
			COMBINED SCIENCE – JUNE 2004	0653	2
Que	estion	1		Sylic 0653 with and withou	ann
(a)		good o	quality drawing of both leaf sections, <u>both</u> showing areas phyll	with and withou	<u>ıt</u> [2]
(b)		(may b	ng a leaf section A with no blue/black area be labelled brown) ng of leaf section B with blue/black area clearly shaded and	labelled	[2]
		If reve	rsed but fits first drawing, allow		
(c)			B unless it follows from (b) that A is correct ection turned blue/black		[2]
(d)	(i)		oil; edict's solution; re result goes green/yellow/red		[3]
	(ii)		part because chlorophyll is needed for photosynthesis king starch/sugar		[1]
				Total 10	marks
Que	estion	2			
(a)	(i)	value	for h within 0.4 mm of supervisor		[1]
	(ii)	brief d	escription of how volume was found		
		volum	e within 10 cm ³ of supervisor		[1]
(b)		Table			
		Six pa	irs of values		
		Good	spread to include a value equal to 150 cm ³		
			s in mm and decreasing with volume of water ise 1 mark when all intervals are exactly the same)		[3]
(c)		Graph			
		Sensil	ole scales for the plotted points		

Plotting correct for 4 values

Within 10% of recorded volume

Volume correctly read needs evidence of extrapolation

Best straight line drawn

Total 10 marks

[3]

[2]

Page 2	Mark Scheme	Sylla
	COMBINED SCIENCE – JUNE 2004	0653

Question 3

Pag	ge 2	Mark Scheme	Sylh
		COMBINED SCIENCE – JUNE 2004	0653
Questio	on 3		Sylh ner 0653 O653 [2] [3]
(a)	gas/va	apour burns	Tide
	brown	or charring/smoke/smell	[2]
(b)	goes o	out NOT 'nothing'	[1]
(c)	UI goe	es red	
	pH ab	out 1-4	
	acid p	resent	[3]
d)	efferve	escence or gets cold	[1]
e)	brief d	escription	[1]
	diagra	m	[2]

Total 10 marks

June 2004

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0653/06

COMBINED AND CO-ORDINATED SCIENCE
Alternative to Practical

Pa	ige 1	Mark Scheme	Sylin
		COMBINED SCIENCE – JUNE 2004	0653
Questic	on 1		TOPHY
(a)		rawing of strip from leaves A and B (1) reas/chlorophyll correctly labelled (1)	Sylin Add her 0653
(b)		wn/brown/yellow on leaf A (1) ck area on leaf B (1)	[2]
(c)(i)		because no starch present/has been used up (1) osynthesis /light is needed to make starch (1)	[2]
(ii)		ound in green areas/where chlorophyll is found (1) nyll is necessary for starch synthesis/photosynthesis (1)	[2]
			Total 8 marks
Questic	on 2		
(a)		150 mA 250 mA , +/-10 mA	
	, 0		current readings) [3]
(b)		correctly plotted (2) vn (can be straight or curved)(1)	[3]
(c)(i)	the bulb	becomes brighter as resistance decreases	[1]
(ii)	the filam	nent of the bulb melted OWTTE	[1]
(d)		e it is not a straight line/V and I are not proportional. graph is a straight line /(they are proportional)	[1]
			Total 9 marks
Questic	on 3		
(a)(i)	53.4 g, 6	60.0 g (Must say 60.0), no tolerance (2)	
(ii)	6.6 g (e	ecf) (1)	[3]
(b)	blue litm	nus (U.I) paper turns red in the gas (reject add indicator)	[1]
(c)(i)	56.8 g ((no tolerance)	
(ii)	3.2 g (e	ecf) both correct for 1 mark	[1]
(d)		tte to remove some water (1) leave the solution to cool (1) porate solution(1) over a boiling water bath (1)	[2]
(e)(i)	62.9 g, ((no tolerance) (1)	
(ii)	9.5 g (e	cf) (1)	[2]

some copper nitrate left in the solution during crystallisation/ water of crystallisation was lost/copper nitrate decomposed/

other suitable answer based on experimental details

(f)

Total 10 marks

[1]

Pa	ge 2	Mark Scheme	Syll
		COMBINED SCIENCE – JUNE 2004	0653
uestic	on 4		Sylic of the College
a)	0.8, 0.5	(no tolerance)	onto
o)	42, 37°C	C (no tolerance)	[2]
;)(i)	17, 12 °	C (errors carried forward)	[2]
(ii)	ring: $\frac{50}{2}$	$\frac{0 \times 17 \times 4.2}{0.8} \text{ (ecf) (1)} = 4462.5 \text{ (1)}$	
	cheeso:	$\frac{50 \times 12 \times 4.2}{0.5} \text{ (ecf) (1)} = 5040 \text{ (1)}$	
	joules/J	(kJ accepted if energy totals divided by 1000) (1)	[5]
i)	respirati	on	[1]
			Total 12 marks
uestic	on 5		
a)	box 2(a) no oxyg Box 2(b Box 3 tu	clourless (clear) to cloudy/milky (1) carbon dioxide /carbona carbon dioxide (suspected)/gas will not support combustional en/no hydrogen/may be nitrogen(1) carbon dioxide confirmed (1) carbon green(1) to red (1) curned to yellow/orange (1)	
)	gas coll	vessel with delivery tube (1) ected over water or in syringe(1) of measuring gas volume/graduations shown (1)	[3]
			Total 10 marks
uestic	on 6		
a)(i)	Use a p	ipette/dropper/burette	[1]
(ii)	103 (no	o tolerance) (1) 147 (ecf) (1)	[2]
o)	28mm,	14mm (+/- 1 mm)	[2]
c)(i)	all point	axes labelled and scale correctly shown (1) s from Fig.6.3 plotted correctly (1) line drawn extended to cut horizontal axis (1)	[3]
(ii)	From ca	andidates' own graph (approx 147 cm³)	[1]
(iii)	it will sir	nk OWTTE	[1]
d)	Yes/ comparison of (a) and (c)(ii) shows that mass in cup is numerically similar to (or greater than) its volume OR No/ cup sank before its mass (g) exceeded the volume (cm ³) (depends on candidate's graph)		

(mark for explanation)

Total 11 marks

[1]