Name

WANN, Papa Cambridge Com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMBINED SCIENCE

0653/05

Paper 5 Practical Test

May/June 2004

1 hour 30 minutes

Candidates answer on the Question Paper. Additional Materials: As listed in Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. Chemistry practical notes for this paper are printed on page 12.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use			
1			
2			
3			
Total			

- 1 You are going to carry out starch tests to find out which plant, **A** or **B**, has been kep dark for 48 hours.
 - Remove a leaf from plant A and cut a strip 1 cm wide from the middle of the leaf as shown in Fig. 1.1.
 - Repeat this with a leaf from plant **B**. During the experiment, take care that you remember which leaf section is from which plant.

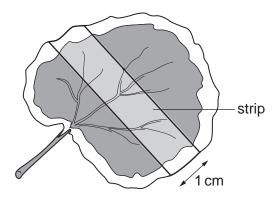


Fig. 1.1

(a) Draw the leaf sections in the spaces below, labelling clearly the areas where there is chlorophyll.

leaf A

leaf **B**

[2]

- Half fill a beaker with water and bring it to the boil. (You may have a water bath instead).
- Using tweezers put the leaf section from plant **A** into the boiling water for one minute.
- Take the leaf section out of the water and put it into a test-tube labelled A.
- In the same way boil the section from leaf B and put it into a test-tube labelled B.

Turn off your Bunsen burner or other naked flame if you have used on is important for safety.

Add enough alcohol to both tubes to cover your leaf sections and place both tubes into your beaker or water bath of hot water for five minutes. The alcohol may boil while it is dissolving the chlorophyll.

Carefully remove the tubes from the water, pour off the alcohol into the container provided, then rinse the leaf sections in cold water.

•	Spread the le	af sections	out on a	white tile	and cover	them	with iodi	ne solution
---	---------------	-------------	----------	------------	-----------	------	-----------	-------------

(b)	In the	spaces	below	draw	your	leaf	sections	as	they	appear	now.	Clearly	label	the
	coloui	red areas	S.											

(b)	In the spaces below coloured areas.	draw	your	leaf	sections	as	they	appear	now.	Clearly	label	the
	leaf A											
	leaf B											
												.
				_								[2]
(c)	Which of the leaf sect				ntains sta	rcn	?					
	Which observation sh											
												[2]

www.xtrapapers.com

For Examiner's Use (d) (i) A student wanted to test the white part and the green part of variegated lea the presence of reducing sugars. He divided the green parts of the leaves from the white parts. Describe what the student must do next. Which part of the leaves will contain reducing sugar? Explain your answer. (ii)[1]

5 BLANK PAGE WANN. Papa Cambridge.com 2 A student read that an object floats in water when its average density is less than water. When the density of the object is just greater than that of water, it will sink. When mass in grams of a vessel placed in water is greater than its volume in cm3 it will sink, sink the density of water is 1 gm/cm³.

You are going to test this suggestion by carrying out the following experiment.

(a) (i) Measure the height, h, of the polystyrene cup and record its value. See Fig. 2.1

[1]

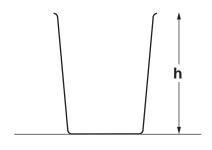


Fig. 2.1

You are now required to find the maximum volume of water that the cup will hold. Briefly describe how you did this and record the volume below.

maximum volume of cup = cm^3 [1]

Pour water into the large beaker to a height just greater than the height, h, of the (b) (i) cup. Add 50 cm³ of water to the cup. Place the cup in the beaker of water and do not let go. Allow it to float in an upright position and measure the distance, d, from the level of the water in the large beaker to the top of the cup. See Fig. 2.2.

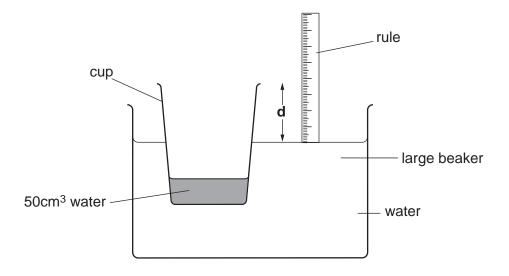


Fig. 2.2

Remove the cup.

Record the distance, **d**, in mm and the volume, **V**, of water in the cup, in Fig. 2

(ii) Add 20 cm³ of water to the cup, making 70 cm³ altogether. Repeat the above procedure to obtain a new value of d. Remove the cup.

For Examiner's Use

1 volume, V, of Repeat the procedure four more times, each time recording the total volume, V, of water and the distance, **d**, in Fig. 2.3.

volume V /cm ³	distance d /mm
50	

Fig. 2.3

[3]

8
Plot a graph of volume V (vertical axis) against distance d. Draw the best line through your points and extend it to cut both axes.

V/cm³

www.xtrapa	apers.com
·V	For
8	For Examiner's
~~	1100

[3]

		(ii)	Read off the value of the volume V when c	I = 0.
			volume V = cm ³	
3			provided with two solids A and B . Carry or not required to identify either solid.	ut the following reactions on both solids.
	(a)	hea	ce about one third of solid A in a hard glass it after it becomes liquid. Test any gas givervations below.	
		ligh	ted spill	
		any	additional observation	[2]
	(b)		ce about one third of solid B in a hard glast a lighted spill. This solid will not become lie	
		ligh	ted spill	[1]
		Divi	ide the rest of solid A into two equal parts.	
	(c)	Dis	solve one part of solid A in water.	
			t this solution of A with Universal Indic clusion.	ator paper and record the result and
		colo	our of III paper	nH number

(d) Mix together the remaining parts of solid $\bf A$ and solid $\bf B$ in a test-tube. Add about $2\,{\rm cm}^3$

conclusion

of water. Record any observation.

(f)	Describe how you would find the volume of gas given off when 1 g of solid B is with an excess of solid A and water added. A diagram of the apparatus is required.	Use
		Toge con
		13
		I

11

BLANK PAGE

Every reasonable effort has been made to trace all copyright holders where the publishers (i.e. UCLES) are aware that third-party material has been reproduced. The publishers would be pleased to hear from anyone whose rights they have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

CHEMISTRY PRACTICAL NOTES

Test for anions

Геst for anions	12 CHEMISTRY PRACTICAL NO	TES test result effervescence, carbon dioxide
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ²⁻) [in solution]	acidify, then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	_
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test result
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns lime water milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint