

International General Certificate of Secondary Education

MARK SCHEME for the NOVEMBER 2004 question paper

0653 COMBINED SCIENCE

0653/02

Paper 2 (Core Theory), maximum raw mark 80

WAN, Daba Cambridge.com

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0653 (Combined Science) in the November 2004 examination.

	maximum	miı	nimum mark re	equired for gra	de:
	mark available	A	С	E	F
Component 2	80	N/A	42	24	16

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

INTERNATIONAL GCSE

WW xtrapapers.com

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0653/02

COMBINED SCIENCE Paper 2 (Core Theory)

	Page	1	Mark Scheme Syllat IGCSE – NOVEMBER 2004 065	and
	(a)	(i)	smaller (than white cells)/no nucleus/bi-concave/doughnut s	°C.
		(ii)	reference to clotting	
	(b)	(i)	O on capillaries at top of diagram	
			A on vein from bottom of diagram up to heart	[2]
		(ii)	heart pumps blood	
			so it travels faster to body cells	
			at higher pressure	max [2]
		(iii)	haemoglobin transports oxygen/CO decreases oxygen transp	port
			so body cells cannot respire as quickly	
			leads to shortage of energy	max [2]
				Total [8]
	(a)	(i)	four	[1]
		(ii)	covalent	[1]
		(iii)	atom cannot be broken down/molecule can be broken down atoms)/molecules are made from atoms	(into [1]
	(b)	(i)	gasoline	[1
		(ii)	fuel for vehicles/petrol engines	[1
	(c)	(i)	monomer(s)	[1
		(ii)	lower mass/density/not brittle/reasonable reference to safety	[1
		(iii)	carbon	
			hydrogen	
			polymer is hydrocarbon	
			because complete combustion gives only CO_2 and H_2O	max [3]
				Total [10]
(a)		regu	lar arrangement	
		touc	hing	[2]
	(b)	(volu	ıme =) 24 (cm ³)	
		dens	sity = mass ÷ volume = 212 ÷ 24/8.83	

_				32
_	Page	2	Mark Scheme IGCSE – NOVEMBER 2004	Syllabus 0653
	(c)	work	x = force x distance/or sensible symbols	Syllabu 0653 [1] Total [8]
		=2.1	2 x 3 = 6.36 (J)	19
	(d)	(grav	vitational) potential (energy)	[1]
				Total [8]
	(a)	Α		
		D		[2]
	(b)	inse	ct attracted to flower by petals/description of petals	
		refer	rence to nectar	
		polle	n attaches to insect's body	
		polle	n deposited on stigma/part E	max [3]
	(c)	fruits	s only develop after pollination/fertilisation	
		from	ovaries	
		the r	nore insects, the more pollination	
		a fev	v insects present even in absence of hives	max [3]
	(d)	add	Benedict's solution and heat	
		posit	ive result is red/orange colour	[2]
				Total [10]
	(a)	(i)	12 electrons	
			arranged 2, 8, 2	[2]
		(ii)	neon	[1]
		(iii)	(unreactive)	
			it is a noble gas/(atoms have) full outer shell	[1]
	(b)	carb	on plus copper oxide and lead oxide	[1]
	(c)	(i)	sodium ion has one less electron than sodium atom equal to electrons but are equal in the atom	/in the ion protons not [1]
		(ii)	sodium ion is positive and oxide ion is negative	
			opposite charges attract	[2]
		(iii)	sodium + oxygen \rightarrow sodium oxide	[1]

Page	93	Mark Scheme Syllabu	
		IGCSE – NOVEMBER 2004 0653	230
(a)	(i)	background radiation	all
	(ii)	184	air [1]
	(iii)	not all radiation directed towards counter/some absorbed by a	air [1]
	(iv)	alpha	[1]
	(v)	gamma it is not stopped by aluminium	[2]
	(vi)	lead shielding use of radiation badges use of tongs	
		use of gloves	max [1]
(b)	(i)	helium nucleus/description	[1]
	(ii)	deflected by magnetic deflected by electric field stopped by paper positively charged	may [2]
		ionising	max [2]
(c)	(i)	(nucleus) splits/divides	[1]
	(ii)	(nuclei) join together	[1]
		(allow 1 mark if all correct but atoms instead of nuclei)	
			Total [12]
(a)	(i)	web shows all four organisms in correct relationship arrows in correct direction	[2]
	(ii)	consumers	[²]
4.			[.]
(b)	(ligh	t captured by) chlorophyll/chloroplasts t used to) combine CO ₂ and H ₂ O gy contained in glucose/carbohydrate	max [2]
(c)	relea	ak down dead organisms/faeces ase nutrients from this process ients recycled	max [2]
(d)	refei	rence to high species diversity rence to maintaining habitats d to maintain oxygen production	
	dang	ger of increased global warming/need to use CO ₂ d to avoid soil erosion/flooding	max [2]

Page	4	Mark Scheme Syllabus	5
		IGCSE – NOVEMBER 2004 0653	SD2
(a)	(i)	Mark Scheme Syllabut IGCSE – NOVEMBER 2004 0653 cloudy carbon dioxide is produced 0653 copper chloride ha correct) bustion requires oxygen (and none shown)	Call
	(ii)	copper chloride	[1]
(b)	com	ha correct) bustion requires oxygen (and none shown) mplex substance is converted into simpler ones by the action of heat	max [2]
(c)	copp	kely to be white/will be some other colour) per is a transition metal h have compounds which are usually coloured	
	(allo	w 1 mark for copper carbonate is green)	[2]
		1	otal [7]
(a)	(i)	conduction convection	[2]
	(ii)	the shiny/silvery surface will be a poorer emitter of IR than dull/black	[1]
	(iii)	reference to insulation shows the rate/reduces efficiency of conduction/convection detail e.g. trapped air is poor conductor and cannot circulate	max [2]
(b)		ectly named region	
		e details about corresponding use X-rays looking at bones in the body)	[2]
		I	[otal [7]