	OF CAMBRIDGE INTERNAT	
0653/01	NCE	COMBINED SCIE
May/June 2006	Choice	aper 1 Multiple
45 minutes	Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recom	Additional Materials:

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

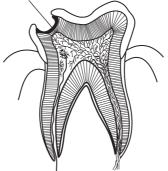
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

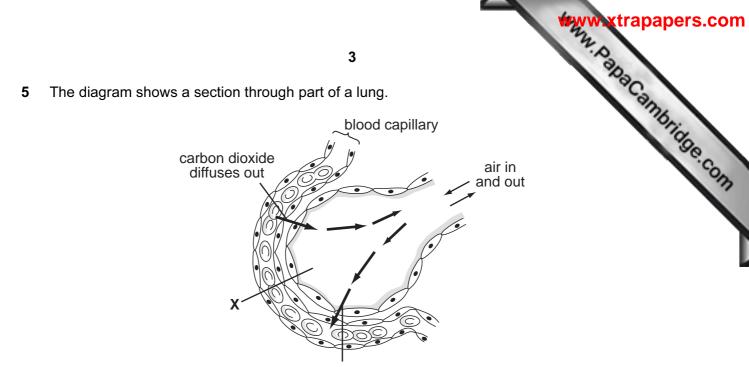
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. trapapers.com


Www.xtrapapers.com

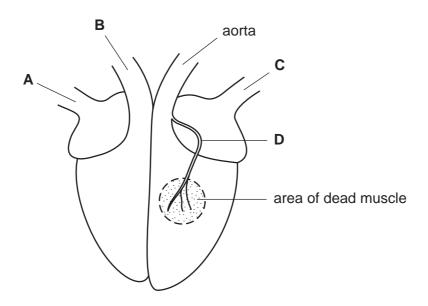
- 1 Which statement about diffusion is correct?
 - A Changing temperature has no effect on the diffusion of molecules.
 - **B** Diffusion involves the random movement of molecules.
 - **C** Small molecules enter but do not leave cells by diffusion.
 - D Small molecules diffuse through cell membranes but not through cell walls.
- **2** A test-tube contains a solution of the enzyme catalase.

Which colour is obtained when this solution is tested with biuret solution?


- A blue
- B blue-black
- C orange
- D violet-mauve
- 3 In what form is carbohydrate stored in a leaf?
 - A fat
 - B protein
 - **C** starch
 - D Vitamin C
- 4 The diagram shows a section through a decaying tooth.

decayed region of tooth

Which parts of the tooth have decayed?

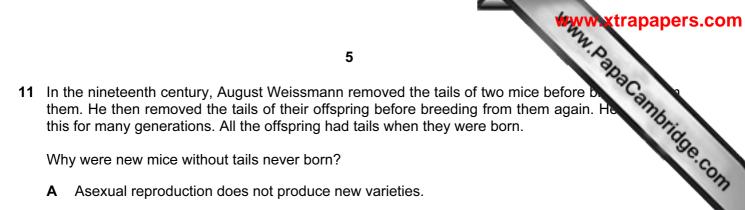

- A dentine and enamel
- B enamel and pulp cavity
- **C** pulp cavity and root
- D root and dentine

oxygen diffuses in

What is structure **X**?

- A alveolus
- B bronchus
- C pleural membrane
- D trachea
- 6 The diagram shows an external view of the heart of a man who has recently had a heart attack. Which blood vessel was blocked by a blood clot to cause the attack?

- 4
- 7 There are four stages in testing a leaf for starch.
 - 1 soften in hot water
 - 2 stain with iodine
 - 3 boil in alcohol
 - 4 boil in water

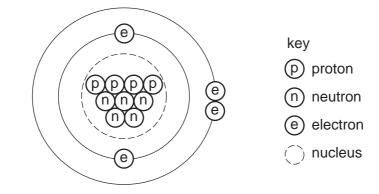

What is the correct order for these stages?

Α	1	2	3	4
в	1	4	3	2
С	3	1	2	4
D	4	3	1	2

8 A person is touched on the back of a hand and they decide to move their arm.

What is the path of nerve signals, when the skin is touched, that causes this response?

- A effector \rightarrow spinal cord \rightarrow brain \rightarrow spinal cord \rightarrow receptor
- $\textbf{B} \quad \text{effector} \rightarrow \text{spinal cord} \rightarrow \text{receptor} \rightarrow \text{spinal cord} \rightarrow \text{brain}$
- $\textbf{C} \quad \text{receptor} \rightarrow \text{spinal cord} \rightarrow \text{brain} \rightarrow \text{spinal cord} \rightarrow \text{effector}$
- $\textbf{D} \quad \text{receptor} \rightarrow \text{spinal cord} \rightarrow \text{effector} \rightarrow \text{spinal cord} \rightarrow \text{brain}$
- 9 In family planning, what acts as a barrier between eggs and sperms?
 - A cap
 - B IUD
 - C pill
 - **D** rhythm
- 10 During pollination, pollen grains are transferred from
 - A anther to ovule.
 - B anther to stigma.
 - C stigma to anther.
 - **D** stigma to ovule.



Why were new mice without tails never born?

- Asexual reproduction does not produce new varieties. Α
- В Genes are not passed on from parents to offspring.
- С The results of asexual reproduction are not predictable.
- **D** Variation due to the environment is not inherited.
- 12 In the carbon cycle, several different processes may release carbon dioxide from dead organisms.

Which process does not do so?

- combustion Α
- В decomposition
- С photosynthesis
- D respiration
- **13** Deforestation in tropical rain forests can lead to
 - decreased carbon dioxide in the air. Α
 - B decreased species diversity.
 - С increased number of habitats.
 - D increased oxygen in the air.
- 14 The diagram represents an atom.

What is the nucleon number of this atom?

Α	2	В	4	С	9	D	13
---	---	---	---	---	---	---	----

5

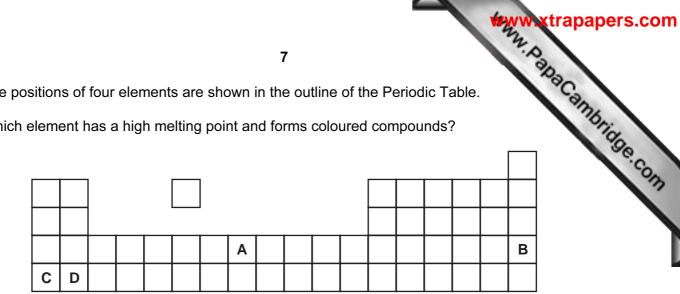
15 Metals and non-metals can each form ions.

Which charges do these ions have?

	metal ion	non-metal ion
Α	negative	negative
в	negative	positive
С	positive	negative
D	positive	positive

16 A mixture contains two liquids. One liquid has a boiling point of 120 °C and the other boils at 160 °C.

Which apparatus should be used to separate the two liquids?


- A Ponly
- B Q only
- C R only
- D P, Q or R
- **17** Argon is a gas used to fill lamp bulbs.

What are sources of this argon?

	the air	seawater
Α	\checkmark	\checkmark
в	\checkmark	X
С	×	1
D	×	x

18 The positions of four elements are shown in the outline of the Periodic Table.

Which element has a high melting point and forms coloured compounds?

- **19** Two properties of a white solid are shown.
 - The solid dissolves in water forming an alkaline solution.
 - The solid gives a yellow flame test. •

Which solid has both of these properties?

- calcium chloride Α
- calcium hydroxide В
- С sodium chloride
- sodium hydroxide D
- 20 Which two elements do not form an alloy?
 - carbon and sulphur Α
 - B carbon and iron
 - C copper and zinc
 - D silver and gold
- 21 Which property of a metal determines the method used to extract the metal from its ore?
 - Α the melting point of the metal
 - the position of the metal in the Periodic Table В
 - С the reactivity of the metal
 - the relative atomic mass, A_r, of the metal D

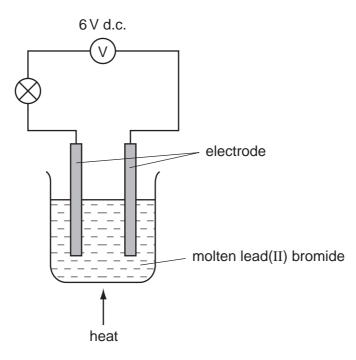
7

water H₂O 22 Aqueous sodium hydrogensulphate reacts with aqueous sodium hydroxide as she reaction, the sodium hydrogensulphate loses hydrogen.

sodium hydrogensulphate + sodium hydroxide \rightarrow sodium sulphate + water

NaOH $Na_2SO_4 + H_2O$ NaHSO₄ + \rightarrow

Which terms apply to sodium hydrogensulphate in this reaction?

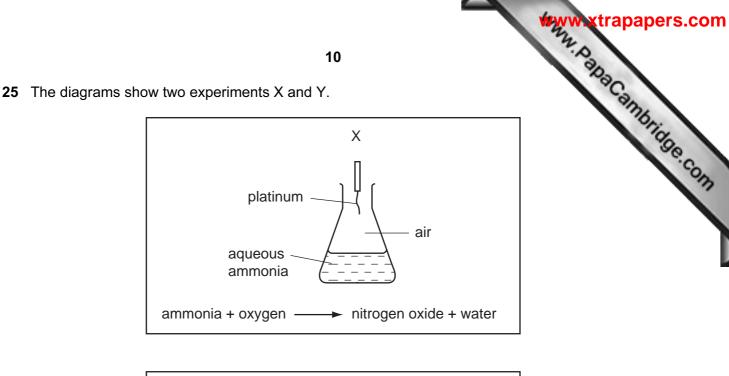

	acid	alkali	salt
Α	\checkmark	×	x
в	\checkmark	×	\checkmark
С	x	\checkmark	x
D	×	\checkmark	\checkmark

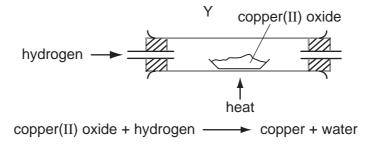
23 When glucose, $C_6H_{12}O_6$, is heated in a test-tube, it can form carbon and water.

This change is an example of

- A combustion.
- В decomposition.
- distillation. С
- evaporation. D

riment 3 Cambridge Com 24 Molten lead(II) bromide conducts electricity and the bulb lights up in the experiment




The bulb goes out soon after the heat is removed.

- 1 Lead and bromide ions can no longer move freely.
- 2 Lead and bromide ions have all reacted.
- 3 Lead(II) bromide has fully melted.

Which reasons explain this?

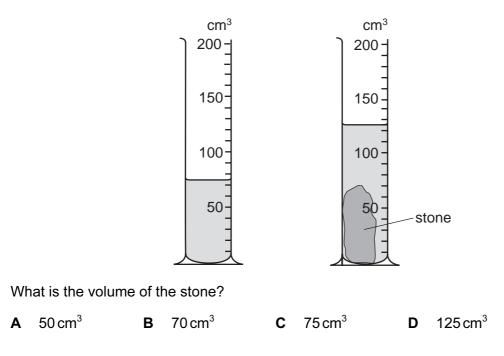
Α	1 only	В	2 only	С	3 only	D	1 and 2 only
---	--------	---	--------	---	--------	---	--------------

Which experiments involve a catalyst?

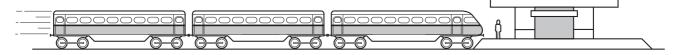
	Х	Y
Α	\checkmark	~
в	\checkmark	x
С	X	√
D	x	x

26 Plastics and wood can each be used to make doors and window frames.

Which row in the table shows two correct statements?

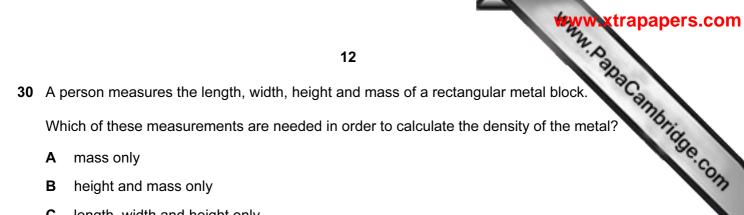

	requires painting for maintenance	obtained from a renewable resource
Α	plastics	plastics
в	plastics	wood
С	wood	plastics
D	wood	wood

27 Some man-made polymers, for example, poly(ethene), are made from monom together by forming carbon-to-carbon bonds.


www.papacambridge.com From what source are the monomers obtained and what type of carbon-to-carbon bonds form

	source of monomers	carbon-to-carbon bonds
Α	coal	covalent
в	coal	ionic
С	oil	covalent
D	oil	ionic

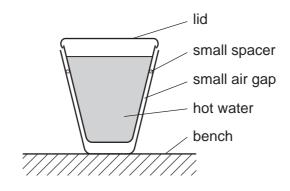
28 A measuring cylinder contains some water. When a stone is put in the water, the level rises.


29 A child is standing on the platform of a station, watching the trains.

A train travelling at 30 m/s takes 3 s to pass the child.

What is the length of the train?

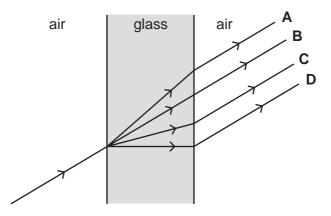
10m 30m 90m 135m Α В С D


Which of these measurements are needed in order to calculate the density of the metal?

- mass only Α
- В height and mass only
- С length, width and height only
- length, width, height and mass D
- 31 Which form of energy do we receive directly from the Sun?
 - A chemical
 - В light
 - С nuclear
 - D sound
- 32 A labourer on a building site lifts a heavy concrete block onto a lorry. He then lifts a light block the same distance in the same time.

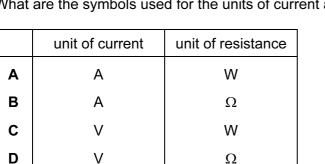
Which of the following is true?

	work done in lifting the blocks	power exerted by labourer
Α	less for the light block	less for the light block
в	less for the light block	the same for both blocks
С	more for the light block	more for the light block
D	the same for both blocks	more for the light block


inner Carnbridge.com 33 Two plastic cups are placed one inside the other. Hot water is poured into the inner is put on top as shown.

Which statement is correct?

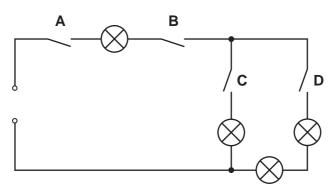
- Α Heat loss by radiation is prevented by the small air gap.
- В No heat passes through the sides of either cup.
- С The bench is heated by convection from the bottom of the outer cup.
- The lid is used to reduce heat loss by convection. D
- **34** A ray of light passes through a window.


Which path does it take?

35 Sounds are made by vibrating objects. A certain object vibrates but a person nearby cannot hear any sound.

Which statement might explain why nothing is heard?

- Α The amplitude of the sound waves is too large.
- В The frequency of the vibration is too high.
- The sound waves are transverse. С
- D The speed of the sound waves is too high.


36 What are the symbols used for the units of current and resistance?

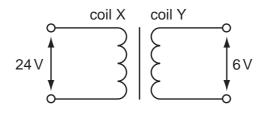
37 Four lamps and four switches are connected to a power supply as shown in the circuit diagram.

When all the switches are closed, all the lamps are lit.

When one of the switches is then opened, only one lamp goes out.

Which switch is opened?

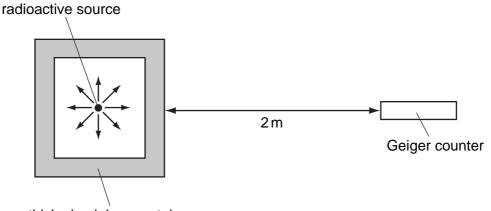
38 An electric power tool is being used outdoors in a shower of rain.


What is the greatest hazard to the user?

- Α The cable gets hot and causes burns.
- В The circuit-breaker cuts off the current.
- The current passes through water and causes a shock. С
- The tool rusts. D

Www.xtrapapers.com

- 15
- **39** A transformer is to be used to produce a 6 V output from a 24 V input.



What are suitable numbers of turns for coil X and for coil Y?

	number of turns on coil X	number of turns on coil Y
Α	240	60
в	240	240
С	240	960
D	960	60

40 A Geiger counter detects radiation from radioactive sources.

A radioactive source is inside a thick aluminium container as shown.

thick aluminium container

Which type of radiation from this source is being detected?

- A alpha-particles
- B beta-particles
- **C** gamma-rays
- D radio waves

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be placed to make amonds at the carliest possible expertingly.

DATA SHEET The Periodic Table of the Elements

					www.xtrapapers.com
				16	A.D. aba
	0	4 Helium 2	20 Neon 10 Argon Argon	8 Krypton 36 Krypton 36 Stypton 37 Stypton 36 Stypton 36 Stypton 37 Stypton 36 Stypton 36 Stypton 36 Stypton 37 Stypton 37 Stypton 38 Stypton 3	175 Lucetium 103 103
Group	١N		19 9 Fluorine 35.5 C 1 Chlorine	Brance Brance 35 Bromine 35 I 127 I 127 S 3 I adrine S Astatine 8 Astatine	Main 173 173 Main Vachium Lutetium Vachium Lutetium Main Lutetium Ioo Lutetium Ioo Lutetium Ioo Lutetium Ioo Lutetium Ioo Lutetium Ioo Lutetium
	>		16 8 Oxygen 32 16 Subhur	79 Selenium alenium eilurium PO	169 Thulium 69 Mendelevium 101
	>		14 Nitrogen 31 Phosphorus	75 Arsenic 33 Arsenic 33 Arsenic 51 51 51 51 51 81 81 81 81 81 81 81 81 81 81 81 81 81	167 68 Fennium 100 100
	≥		6 Carbon 6 Silicon 14 Silicon	73 Germanium 32 66manium 32 50 Tin 50 Tin 82 Lead	165 Holmium 67 Ensteinium 99 (r.t.p.).
	≡		11 B B 5 5 27 27 Aluminium 13	70 Gal 31 115 1 7 49 10dum 49 204 204 81 Thailum 81	140141144144150152157157159162162CePrNdPromonSmEuGdThDyDyHomCommonProsectoriumNeodomiumRoodomiumRoodomiumBrancoBrancoDyDyHom232238UNpPuAmCmBrCfEsCfEsBr232DisprosiumRoodomiumRoodomiumRoodomiumRoodomiumBrancoBrDyDyPu233DisprosiumRoodomiumRoodomiumRoodomiumBrCmBrDyPu233DisprosiumRoodomiumRoodomiumRoodomiumBrCmBrDy233DisprosiumRoodomiumRoodomiumBrCmBrCfEs233DisprosiumRoodomiumRoodomiumRoodomiumBrCmBrCfEs233DisprosiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomium233DisprosiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomium233DisprosiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomiumRoodomium234DisprosiumRoodomiumRoodomium
				65 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ature and
				64 Cu 29 Copper 29 Copper 47 108 79 79 Cu	157 Gaddinium 64 Cm 96 Curium
				s 28 106 166 166 195 78 Plathum 78 Plathum	152 Europium 63 Americium 95 m ³ at rooi
			1	59 Cobalt 27 Cobalt 103 45 Rh 45 Rh 103 192 192 192 192 192	Buttonium Plate is 24 dh
		+ Hydrogen		56 Fee Iron 26 Iron 101 44 Ru 44 190 76 Osmium 76	Promethium B Neptunium Of any ga
				55 Manganese 25 TC 136 Hanganese 25 76 Renetium 75 Rhentum 75	¹⁴⁴ ¹⁴⁴ ¹⁴⁴ ¹⁴⁴ ¹⁴⁴ ¹⁴⁴ ¹⁴⁴
				52 Crhomum 24 Molybdenum 42 184 77 Tungsten	Protectinium 59 01ume of 0
				23 Vanadum 23 93 93 93 93 14 181 181 73	140 58 Centum 58 232 7hontum 90 The V
				48 11 22 91 91 22 7 7 7 7 178 178 178 178 178 178 178 178	mbol mic mass mic) number
			[]	E	(att (att
	=		9 Beryllium 4 Magnesium Magnesium	20 Calclum	Fraction Radium Actinium 87 88 Actinium 88 Actinium 89 58-71 Lanthanoid series 190-103 Actinoid series 190-103 Actinoid series Key a = relative a b b = proton (a
	_		23 Sodium		Fr 87 *58-71 L 1 90-103 Key