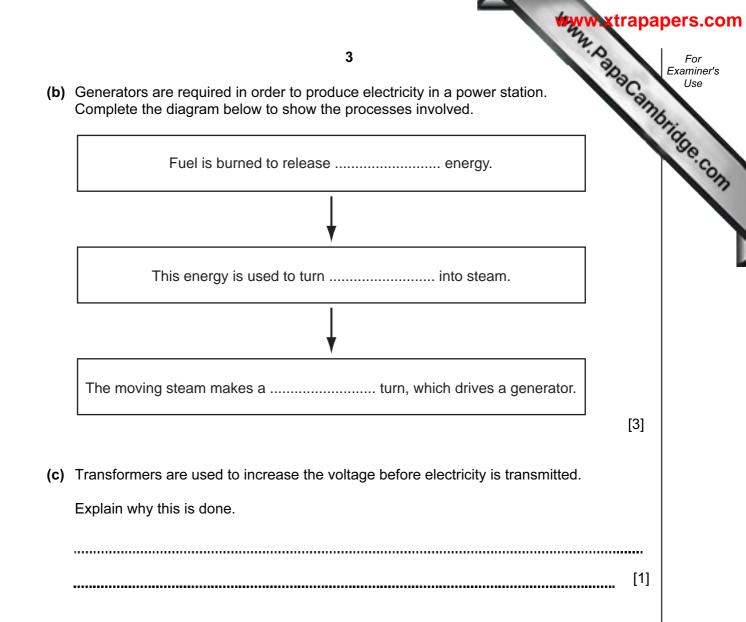

Centre Number	Candidate Number	Name
		232
		Name E INTERNATIONAL EXAMINATIONS tificate of Secondary Education 0653/02
COMBINED	SCIENCE	0653/02
Paper 2(Cor	e)	October/November 2006
		1 hour 15 minutes
	wer on the Question Pape aterials are required.	r.
EAD THESE INSTRU	ICTIONS FIRST	
-		d name on all the work you hand in.
Vrite in dark blue or bla	•	hs, tables or rough working.
'ou may use a soft per		

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total		


www.papacambridge.com 1 (a) The pie chart in Fig. 1.1 shows the energy sources used to generate the electric European country in one year.


25%
25%
40%
3%
3%
2%
2%

ΓI	g.	1	.1

(i) Suggest one fuel which could have been included in the 'other fuels' section.[1] (ii) Calculate the percentage of the country's electricity that comes from fossil fuels listed in Fig. 1.1.[1] (iii) Hydroelectricity is a renewable energy resource. Name two other renewable energy resources. 1. _____ 2. [2]

Www.PapaCambridge.com 2 A student uses the apparatus shown in Fig. 2.1 to investigate several different a reactions. In each reaction, a solid reacts with hydrochloric acid and a gas is produced volume of gas produced in each case can be measured using the gas syringe.

- Fig. 2.1
- Table 2.1 lists three experiments in which three different solids react with (a) (i) hydrochloric acid.

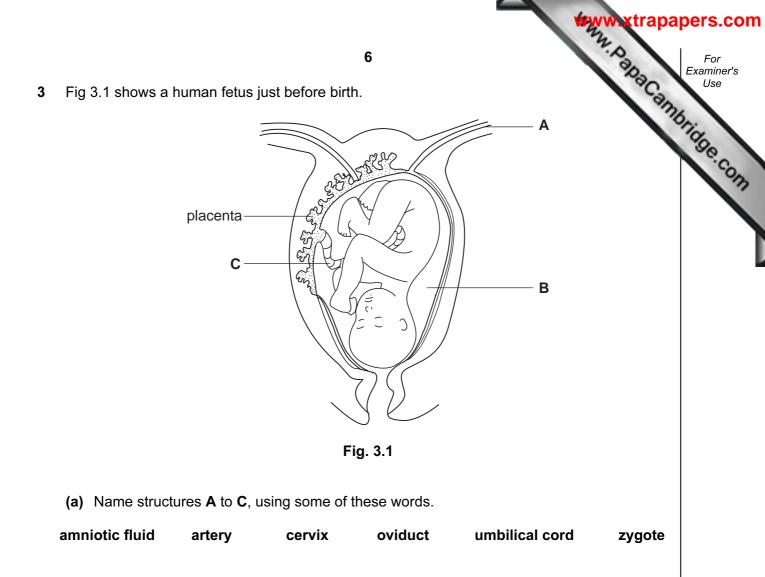
Complete Table 2.1 by writing in the right hand column the name of the gas produced.

Table	2.1
-------	-----

experiment number	solid reacted	gas produced
1	calcium carbonate	
2	magnesium	
3	sodium hydrogencarbonate	

[3]

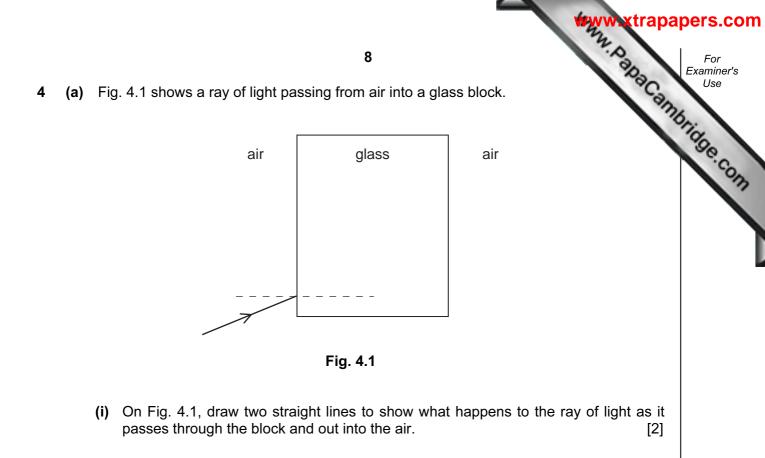
[1]

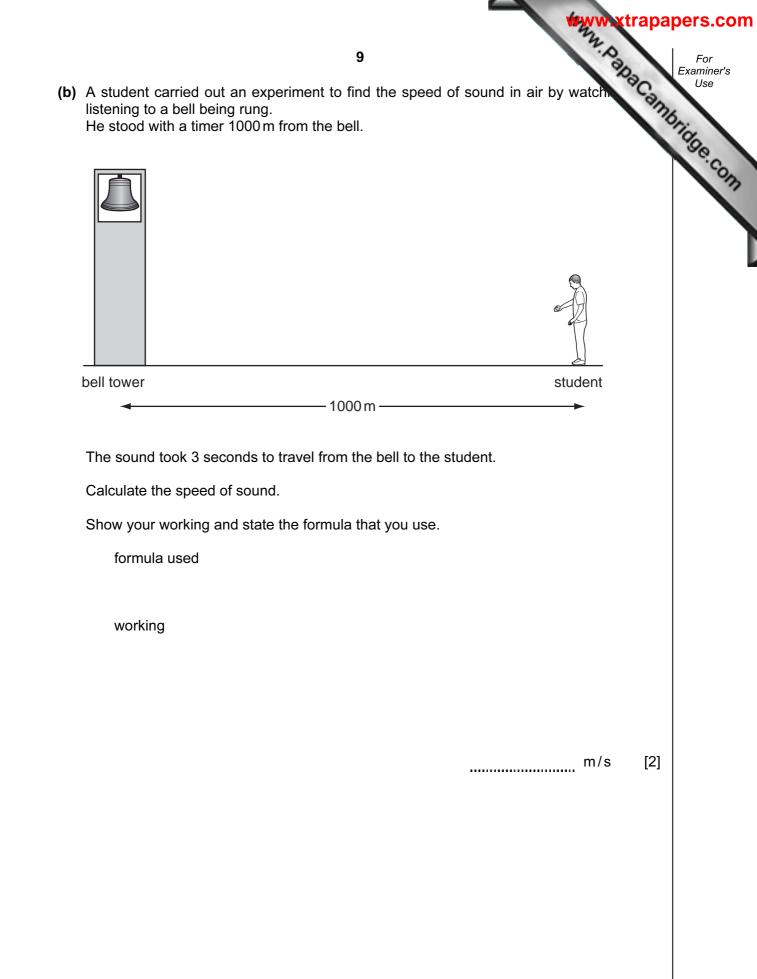

(ii) Write the chemical formula of hydrochloric acid.

(iii) Choose one of the gases you have named in Table 2.1 and describe the test for this gas.

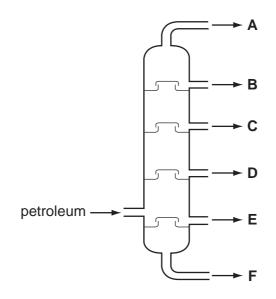
.....

..... [2]


			apers.com
		5	For Examiner's
(b)		5 w would the student use the apparatus shown in Fig. 2.1 to find out which is the ap	Use
		[1]	Se.Con
(c)	The	e student finds that the rate of reaction is greatest for experiment 3 .	
	(i)	Suggest the measurements which the student took in order to find the rate of reaction in each experiment.	
		[2]	
	(ii)	Suggest one way in which the student could change the conditions of experiment 3 in order to reduce the rate of reaction.	
		[1]	


	Α	
	В	
	С	[3]
(b)	Explain how the developing fetus obtains nutrients while it is in the uterus.	

[3]


	7	
(c)	Outline what happens during the birth of the baby.	Examiner's Use
	7 Outline what happens during the birth of the baby.	hidge.co.
	[2]	177
(م)		
(a)	If a mother has AIDS, there is a risk that her baby may be born with HIV and develop AIDS.	
	Explain how this could happen.	
	[2]	

(ii) On Fig. 4.1, indicate the angle of refraction as the ray enters the block. [1]

om pet Fig. 5.1 shows industrial apparatus used to obtain useful products, **A** to **F**, from petro (crude oil). 5

(a)	(i)	Name the process shown in Fig. 5.1.
		[1]
	(ii)	State which of the products, A to F , is at the highest temperature when it first comes out of the apparatus in Fig. 5.1.
		[1]
(b)	Pro	duct B in Fig. 5.1 is used as fuel for cars.
	(i)	Name the element which reacts with molecules of product B in car engines.
		[1]
	(ii)	Describe and explain one way in which the use of product B as car fuel could be affecting our environment.
		[3]

	WWWX t	rapapers.com
	11	For Examiner's
(c)	Plastics contain molecules called polymers.	Can Use
	Describe how a typical polymer molecule such as poly(ethene) is different from simple molecule such as ethene.	Oridge . com
		[2]

An athlete ran on a treadmill on three different days. He ran a different distance 6 day.

Www.PapaCambridge.com The volume of oxygen that he used was measured during each run. The results are shown in Table 6.1.

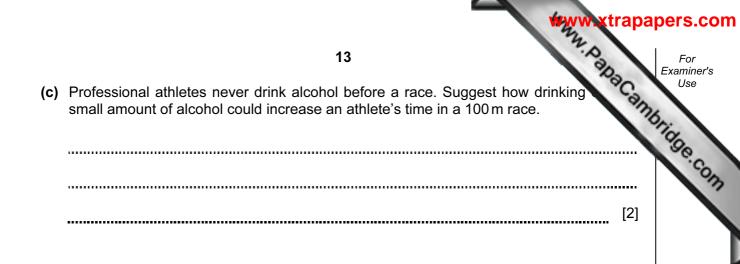
length of run / m	total oxygen used / dm ³	
100	10	
1500	36	
10 000	150	

Table 6.1

(a) (i) Calculate the oxygen used per metre in the 100 metre run.

dm³ [1]

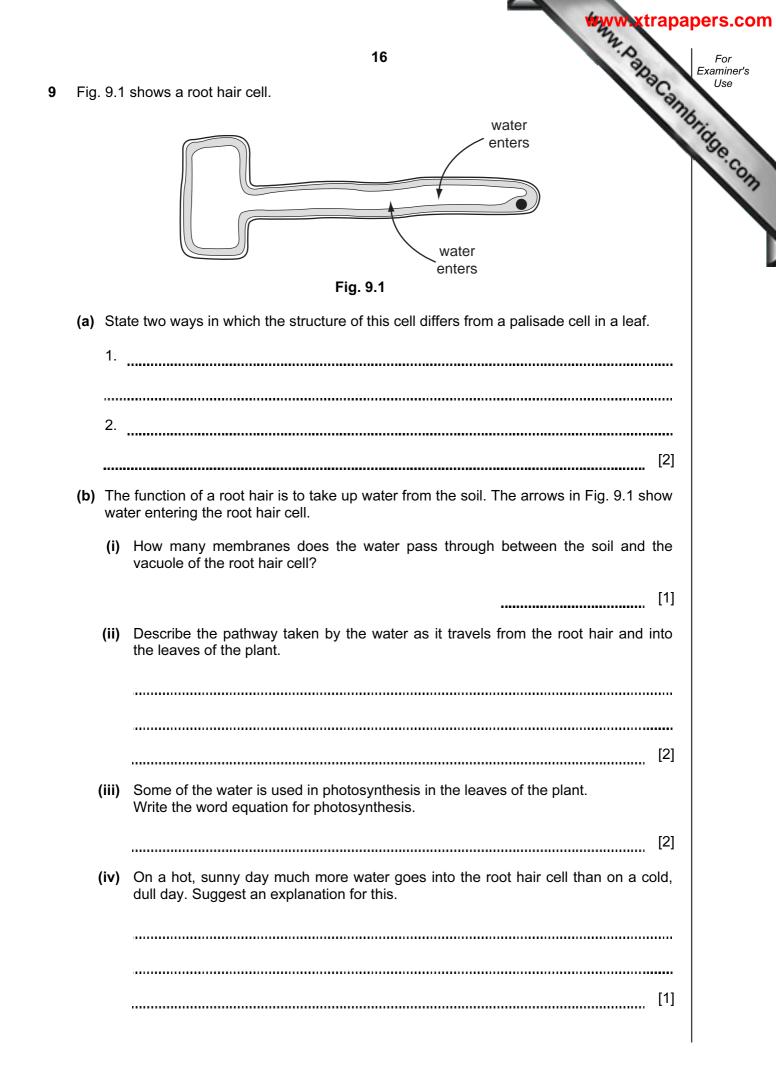
(ii) Describe the relationship shown in Table 6.1 between the oxygen used and the length of the run.


[1]

(b) (i) Describe how the oxygen breathed in by the athlete was transported to his muscles.

[2]

(ii) Explain how the oxygen taken in by the athlete was used to provide the energy that he used in the runs.


[3]

 a) A torch contains 3 cells, a switch and a lamp connected in series. (i) Draw a circuit diagram for this circuit using the correct symbols. [3] (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1]		14	rapape
 [3] (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector is a source [3] (ii) Name one other region of the electromagnetic spectrum. 	(a) At	orch contains 3 cells, a switch and a lamp connected in series.	C Ex
 [3] (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector is also a region of the electromagnetic spectrum. [3] (ii) Name one other region of the electromagnetic spectrum. 		Draw a circuit diagram for this circuit using the correct symbols.	annbri
 [3] (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector [3] (ii) Name one other region of the electromagnetic spectrum. 			
 (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector [3] (ii) Name one other region of the electromagnetic spectrum. [3] 			
 (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector [3] (ii) Name one other region of the electromagnetic spectrum. [3] 			
 (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector [3] (ii) Name one other region of the electromagnetic spectrum. [3] 			
 (ii) The potential difference across each of the cells in the circuit is 1.5 V. State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector [1] (ii) Name one other region of the electromagnetic spectrum. [3] 			
State the total potential difference across the three cells. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. [1] (b) Visible light is one of the main regions of the electromagnetic spectrum. [1] (i) State a source, a detector and a use of infra-red radiation. source use [3] (ii) Name one other region of the electromagnetic spectrum. [3]			[3]
 (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector use [3] (ii) Name one other region of the electromagnetic spectrum. 	(ii)	The potential difference across each of the cells in the circuit is 1.5 V.	
 (b) Visible light is one of the main regions of the electromagnetic spectrum. Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector use [3] (ii) Name one other region of the electromagnetic spectrum. 		State the total potential difference across the three cells.	
Infra-red radiation is also a region of the electromagnetic spectrum. (i) State a source, a detector and a use of infra-red radiation. source detector use [3] (ii) Name one other region of the electromagnetic spectrum. [1]			[1]
source detector use [3] (ii) Name one other region of the electromagnetic spectrum.			
detector use [3] (ii) Name one other region of the electromagnetic spectrum.	(i)	State a source, a detector and a use of infra-red radiation.	
detector use [3] (ii) Name one other region of the electromagnetic spectrum.		source	
use [3] (ii) Name one other region of the electromagnetic spectrum.			
use [3] (ii) Name one other region of the electromagnetic spectrum. [1]		detector	
[3] (ii) Name one other region of the electromagnetic spectrum.			
(ii) Name one other region of the electromagnetic spectrum.		use	[2]
[1]			[3]
[1]	(ii)	Name one other region of the electromagnetic spectrum.	
			[1]

8 (a) Table 8.1 shows some properties of elements.

		MAN WALL	rapapers.com
		15 M. B	For
(a)	Tabl	le 8.1 shows some properties of elements.	Use Use
		e the letter M in the right hand column next to properties which are typical allic elements.	For Examiner's Use
		Table 8.1	·Co.
		can be hammered into different shapes	17
		poor conductor of heat	
		is a gas at room temperature (20°C)	
		good conductor of electricity	
		poor conductor of electricity	
			[2]
(b)	Alun	ninium is an important metal in Group III of the Periodic Table.	
	(i)	State the chemical symbol for aluminium.	
	.,		F43
			[1]
	(ii)	State the number of protons in one atom of aluminium.	
			[1]
	(:::)	Why is aluminium a suitable material for making containers used to store food?	
	(iii)	Why is aluminium a suitable material for making containers used to store food?	
			[1]
(c)	Alun	ninium is obtained from the compound aluminium oxide.	
	Expl	ain why aluminium oxide is called a compound and not an element.	
			[2]
(d)		etrolysis is used to extract aluminium from aluminium oxide, an ionic compound th is insoluble in water.	und
	(i)	How can aluminium oxide be made into an electrolyte?	
			[1]
		Complete the word equation below to show the chemical change that occurs what aluminium oxide undergoes electrolysis.	nen
		→ aluminium +	[1]

		WEAV WAXE	rapapers.com
		17	For Examiner's
10	(a)	Explain why it could be dangerous to switch on a mains electrical appliance us hands.	Cannbridge.com
			-CO.
			[2]
	(b)	Explain why a source of alpha radiation is more dangerous if it gets inside the hun body than outside the body.	nan
			[2]
	(c)	Explain why small expansion gaps are left between sections of road bridges.	
			[1]

BLANK PAGE

18

BLANK PAGE

19

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET The Periodic Table of the Elements

					www.xtrapapers.com
				20	. Days
	0	4 Helium 2	20 Neon 10 Neon 40 Ar	8 Kiypton 36 Kiypton 36 X 8 8 Radon 86 Radon	M 173 M 175 Law 175 Law M No L L No 103 L L
	١١٨		19 Fluorine 35.5 Cthorine	80 Bromine 35 127 127 127 53 odine 53 At	Transaction Totalium Nobelium Nobelium
	N		16 8 Oxygen 32 36 Noter 16	79 Selenum 34 Te 52 Poontum 84	169 Thulium B Mendelevium 101
	>		14 Nitrogen 31 Phosphorus	75 Asenic 33 Arsenic 51 Antimony 51 8 Bismuth 83 Bismuth	167 68 Erbum 68 Fermium 100
	2		12 6 Carbon 6 28 28 Sillcon	73 Germanium 32 119 50 Tm 50 207 82 Lead	165 Ho 67 Ensteinum 99 (r.t.p.).
	≡		11 B Boron 5 27 27 Altriminum 13	70 Gallum 31 Gallum 115 115 115 204 204 81 Thailum 81	162 Dysprosium 66 Cf Californium 98 Pressure
				65 30 Zinc 30 Zinc 48 Cd 48 Cd 6 Cd 6 Cd 6 Cd 6 Cd 6 Cd 7 Cd 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	159 1 Tb 65 BK Berkelum 97 ature and
Group				64 Cu 29 29 29 29 108 47 197 79 20 004	157 Gd 64 64 64 06 minium 96 curium 96 curium
				59 28 Nickel 28 Nickel 46 46 195 78 Platinum 78 Platinum	Eu Eu Bannerteum Bannarteum Bannarteum Bannarteum
				59 27 27 27 27 103 45 8 8 8 103 103 103 103 102 102 102 102 102 103 103 103 103 103 103 103 103 103 103	as is 24 d
		$^{+}$ Hydrogen		56 Fee Iron 26 Iron 101 44 Ruthenium 44 00 Somum	e of any ga
				55 Mn Manganese 25 TC 136 Hachmeturm 43 Reenturm 75	none mole
				52 Chromium 24 Molybdenum 42 184 74 Turgsten 74	140141144144144160152157157159162162CePrNodNodProduitineSamatumEuropuine6.4160DyPuDriamProsectivitienNoopmunineProsectivitienBandumEuropuine6.4160Dy162165DriamProsectivitienProsectivitienProsectivitienBandumEuropuineContinueBandumProsectivitien<
				51 Variadium 23 33 93 93 93 93 14 181 73 Tantatum 73	The v
				48 Titantum 91 91 40 178 40 178 + 72 Hantuum	nic mass bol number
				45 Scandum 21 39 39 39 39 139 57 ***********************************	Bendamium to the series as a series as a series as a series as a stomic symbol b = proton (atomic) number
	=		9 Beryllium 4 Magnesium 12	40 Calcium 20 Strontium 38 Strontium 56 Barium 56 Barium	
	_		23 Lithium 23 23 23 23 23 23 23 23 23 23 23 23 23	19 Potassium 19 10 10 10 10 10 10 10 10 10 10	Key b