

Www.strapapers.com MARK SCHEME for the May/June 2008 guestion paper

0653 COMBINED SCIENCE

0653/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pag	e 2			Mark Schen	1e		Syllabus	an er
			IGCS	o⊏ – May/Jur	10 2000		0000	200
(a)	chlo chlo (cel cell	prophy proplas I) wall memb	ll st prane st for one mark:					Supplies 1
-			,					[-]
(b)	(i)	at lea	st two more recta	angles drawn	, in a line and co	nnected	;	[1]
((ii) (damages) phloem (vessels)/sieve tubes; no mark if xylem is also referred to							
		throu	gh which sugar is ells cannot make	transported;	ugar/carbohydrat	e/aluco	se/sucrose:	[max 2]
		10010		, anon onn, o	agai, cai bony arac	io, glaco		[
(c)	(i)	asexu	ual/vegetative;					[1]
(ii)	can re so re	eproduce without production possib	a partner; ble even if fev	v other plants arc	ound;		
		offspi so if p	ing are <u>genetical</u> parent is adapted	<u>ly</u> identical to to environme	parent/clones; ent they will be as	s well;		
		youn so ha	g plants already h ve a better chan	nave roots; ce of survival	than a germinati	ng seec	lling;	[max 3]
(d) t	tran wate wate	nspirati er vap er drav	on/water loss fro our diffuses out o wn up through xy	m leaves/eva of leaves; lem vessels;	poration;			
a f	also forn proc	o allow n pitch duce te	other functions, ers; to trap insec endrils; for climbi	e.g. ts for nitrogen ng; named:	n source;			
5	stor	re wate	er; in dry environ	nent;				
e r	exci resp	retion; piratio	loss of named w n; release energy	aste product	; e; not 'produce' (energy		[max 2]
								[Total· 11]

				www.xtrapapers.co
	Pa	ge 4	Mark Scheme	Syllabus er
((a)	it de moi	ecreased; re steeply at first/other description of shape of curve;	a Cambrid
((b)	bur usir 'scr	ning less fossil fuels; ng better quality fuels/removed S from fuel before bur ubbers' to clean emissions;	rning; [max 2]
((c)	the <u>y</u> cau	y are harmful to human health; se breathing problems/named illness;	
		cau	se acid rain;	
		dan by i	nages buildings; reacting with/damaging, limestone;	
		har	ms/kills, plants/trees;	
		acio so f	difies lakes/rivers; ish/shellfish cannot live there/harms aquatic organisr	ms; [max 3]
				[Total: 7]
((a)	A – B –	B constant acceleration; C constant speed;	[2]
((b)	tota (0.5 = 18	ll distance covered = area under graph; 5 x 5 x 4) + (40 x 4) + (0.5 x 5 x 4); 80m;	[3]
				[Total: 5]
((a)	(i)	copper oxide + hydrogen \rightarrow copper + water;	[1]
		(ii)	appropriate colour change/electrical conductivity;	[1]
((b)	(i)	oxide ion has 2 more electrons (than protons)/has g oxygen atom has same number of electrons as prot	jained 2 electrons; tons; [2]
		(ii)	two; because copper ion has +2 charge to balance the – and so to discharge the Cu^{2+} ion two electrons are r	2 oxide charge; equired; [max. 2]
((c)	(i)	copper sulphate/copper(II) sulphate ; not formula	[1]
		(ii)	zinc is more reactive than copper;	[1]
	((iii)	zinc (atoms) oxidised;	ICI
				IT_4_1. 401

U	Mark Scheme Sylla	bus er
		26
(a) (i) wo	rk done = force x distance;	mb.
	000 x 2000 - 2000 0000,	19
(ii) po = 2	wer = work / time; 2000.000 / 100 = 20.000 W:_allow_l/s	12
-	allow ecf	[—]
(b) (i) ele	ectromagnetic/transverse;	[1]
(iii) rof	laction:	[4]
(II) Ter		[']
(c) correct	formula: $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$.	
$1/R = \frac{1}{2}$	$\begin{array}{c} R \\ R $	
R = 2 c	hms;	[3]
(d) extensi	on = 12 cm/appropriate working;	[0]
(4 X 1116	ass –) 200 g,	[2]
		[Total: 11]
(a) FCG;		
D;		[2]
(b) (i) ox	ygen/gas/material <u>is given off/leaves the flask;</u>	[1]
(ii) inc	reasing the mass of MnO ₂ increases the rate;	[1]
(iii) ac	is as a catalyst;	
ca	aryst speeds up reaction (without being consumed);	
ev	idence from table:	
de	tail which reasonably accounts for effect on rate of increasing a	mount of catalyst;
ref	. decreasing activation energy;	[max 3]
(iv) hig	her temp means particles move faster; not vibrate	
SO SO	collision frequency increases; collision energy increases/hit each other harder:	
50		

[Total: 10]