

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CENTRE NUMBER

		CANDIDATE NUMBER		

COMBINED SCIENCE

0653/02

Paper 2 (Core)

May/June 2008

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages.

W. Dall	
groups and pen	
ole are not the norm	

[1]

1 The Periodic Table shows all of the chemical elements arranged into groups and pen

Fig. 1.1 shows part of the Periodic Table. The letters in this table are **not** the norm chemical symbols of the elements.

	Ι	II						Ш	IV	٧	VI	VII	0
1													Α
2	F												Е
3	С							Н					
4	G				В							D	

Fig. 1.1

(a)	Complete the	statements	below	using	letters,	chosen	from	A to	Η,	which	refer	to
	elements in Fig	g. 1.1. Letter	s may l	be used	d once,	more tha	an once	e or r	not a	at all.		

	•	The element shown as letter	is an alkali metal in period 3.	
	•	The element shown as letter	is the noble gas with the lowest density	
	•	The three elements shown as letters	and	
		have very similar chemical properties	to each other.	
	•	The element shown as letter	is sometimes used as a catalyst.	[4]
(b)		e elements sodium and sulphur are bot lium oxide and sulphur dioxide respective Explain the meaning of the term oxidis	•	ıce
	(1)	Laplain the meaning of the term oxidis		

[1]

(ii)	Sodium oxide	e reacts with water to form solution P .	•
	Sulphur dioxi	de reacts with water to form solution Q .	2
	Predict and e	xplain the colour of Universal Indicator solution when added to P and	
	colour in P		
	explanation		
	colour in Q		
	explanation		
		[4]	
(iii)	Name the type solution Q .	pe of chemical reaction which occurs when solution P is added to	

2 Fig. 2.1 shows the structure of the human thorax (seen from the front).

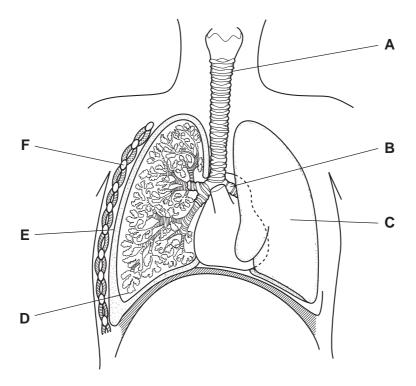


Fig. 2.1

(a)	Give	e the letter of each of the following structures.						
	(i)	the left bronchus						
	(ii)	a pleural membrane						
	(iii)	a place where there are goblet cells and cilia	[3]					
(b)	Gas exchange takes place in the alveoli. When a person smokes for a number of years, the walls of the alveoli start to break down. This is called emphysema.							
	(i)	Name the process by which molecules of oxygen pass into the blood from talveoli.	he					
			[1]					
	(ii)	Explain why emphysema makes it more difficult for oxygen to get into the blood.						
			[2]					

(c) Oxygen is transported around the body in red blood cells. Fig. 2.2 is a diagragroup of red blood cells.

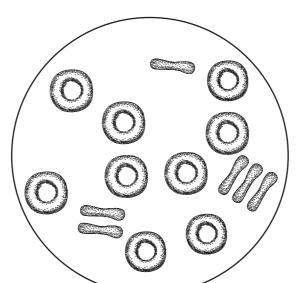


Fig. 2.2

	(1)	cells and white blood cells.	iou
			[1]
	(ii)	What makes red blood cells look red?	F41
			[1]
(d)	Exp	plain why body cells need a constant supply of oxygen.	
			 [2]
			[4]

[1]

3	A man	drives a golf ball with his club and it flies through the air for nearly 200 metres.	For
	(a) (i)	State the form of energy given to the ball by the club when the ball is hit.	78Hidis mer
			[1]
	(ii)	State the type of energy gained by the ball as it rises into the air after being hit	

(b) As the golfer moves around the course in a golf cart, his movement is measured. The measurements are plotted on the graph in Fig. 3.1.

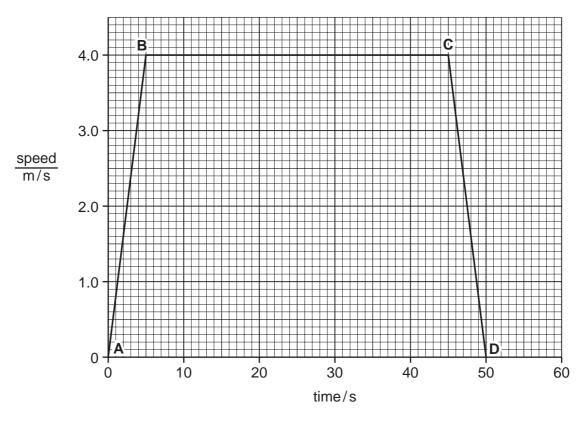


Fig. 3.1

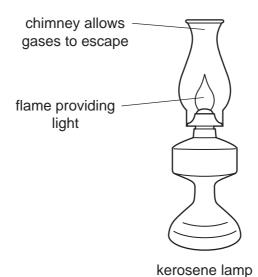
A – B	
B-C	
C - D	
	[3]
What is the speed of the cart after 3 seconds?	

(ii)

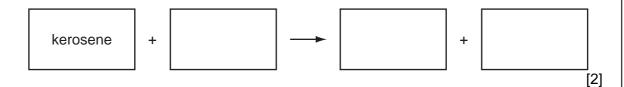
(i) Describe what is happening between

_____m/s [1]

				Can
(c)	The	e golfer hits the ball along the ground. It travels 6 m in 3 s.	`	1
	Cal	culate the average speed of the ball.		`
	Sta	te the formula that you use and show your working.		
		formula		
		working		
			m/s	[2]
(d)	The	golfer's bag of clubs has a mass of 6kg.		
	(i)	Calculate the weight of the bag of clubs.		
		Assume that the gravitational field strength on Earth is 10 N/kg.		
			N	[1]
	(ii)	Calculate the work done by the golfer when the bag is lifted 0.5 m.		
	(,	State the formula that you use and show your working.		
		formula		
		working		
			J	[2]


Kerosene is a mixture of hydrocarbons used as a fuel for aircraft and for lighting cooking.

(a) Kerosene is obtained from petroleum (crude oil) and is a liquid which boils in the range $150\,^{\circ}\text{C} - 200\,^{\circ}\text{C}$.


(i)	Name the process used to separate kerosene from petroleum.
	[1]
(ii)	State the important difference between the various compounds in petroleum which enables them to be separated by the process you have named in (i).
	[1]

(b) The light from a kerosene lamp is provided by the flame produced when kerosene burns in air.

The lamp must be carefully designed and operated to ensure that most of the kerosene undergoes complete combustion.

(i) Complete the **word** chemical equation for the complete combustion of kerosene.

(ii)	Describe one observation which shows that the reaction occurring in the keros lamp is exothermic.	My
		[1]

(c) The full chemical symbol for carbon is shown below.

¹²₆ C

Draw a diagram of a carbon atom. Label the nucleus and show the full electron configuration.

[2]

5 Fig. 5.1 shows the quantity of carbon dioxide that was emitted to the atmosphere by industrial company, between 2000 and 2005.

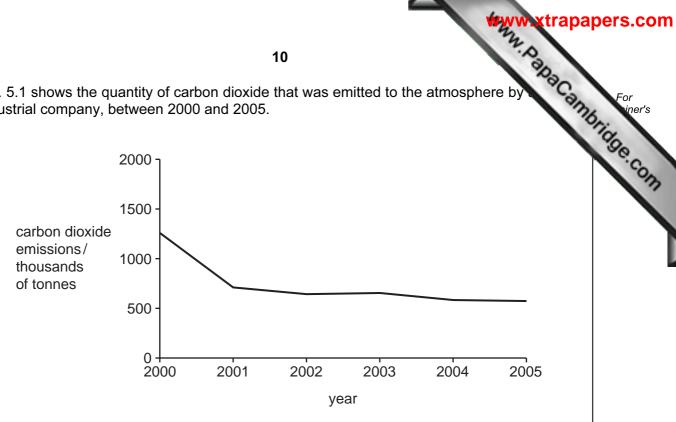
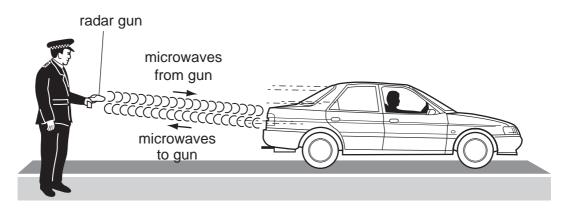


Fig. 5.1


(a)	Describe how the company's carbon dioxide emissions changed between 2000 and 2005.
	[2]
(b)	The company stated that these carbon dioxide emissions included those relating to the electricity that it used.
	Explain how using electricity can be responsible for emissions of carbon dioxide.
	[2]
(c)	Apart from using less electricity, suggest one other way that the company could reduce its carbon dioxide emissions.
	[1]

(d)	In 1997, at a meeting in the city of Kyoto in Japan, many countries in the world an agreement to reduce their emissions of carbon dioxide. The agreement came force in 2005.
	Explain why we need to reduce emissions of carbon dioxide.
	[2]
(e)	Tropical rainforests can help to combat rising levels of carbon dioxide, because they take it from the air and use it in photosynthesis.
	Describe one other reason why we should try to conserve tropical rainforests.
	[2]

6 (a) A policeman is using a radar gun to measure the speed of a car.

The radar gun emits microwaves which hit the moving car and bounce back to receiver in the radar gun.

A computer in the radar gun calculates the speed of the car.

(i) What type of waves are microwaves?

(ii)

	[1]
The waves bounce off the car back towards the radar gun. What is th called?	is process

[1]

- **(b)** A car has two headlamps and two rear lamps. All four lamps are connected in parallel with each other across a 12 V battery.
 - (i) Complete the circuit diagram below to show how the four lamps are connected to the battery. Include one switch in your circuit which will control all four lamps.

[2]

____cm

	(ii)	If the filament in one lamp breaks, the other three stay lit. Explain whappens.
(c)		. 6.1 shows a spring. The spring is 10 cm long. A metal nut is hung on the spring the length is now 13 cm.
		10 cm
		Fig. 6.1
	Cal	culate the length of the spring if 3 more identical nuts are hung on the spring.
	Sho	ow your working.

		WENT WAR	xtrapapers.com
		14	all
(a)	Draw lines to link each term t	o its definition.	For iner's
	term	definition	Atrapapers.com Atrapapers.com For iner's
	cell membrane	a green pigment found in some plant cells, which absorbs energy from sunlight	OH
	chlorophyll	a partially permeable layer surrounding a cell	
	cell wall	a fully permeable layer surrounding a plant cell	
	chloroplast	an organelle found in some plant cells, where photosynthesis takes place	
			[3]
(b)	Plant leaves often contain sta	arch, which is produced during photosynthesis.	
. ,	Describe how the starch is pr		

(c) Fig. 7.1 shows one of the ways in which a plant called Bryophyllum reprodu grows new plantlets from its leaves.

Fig. 7.1

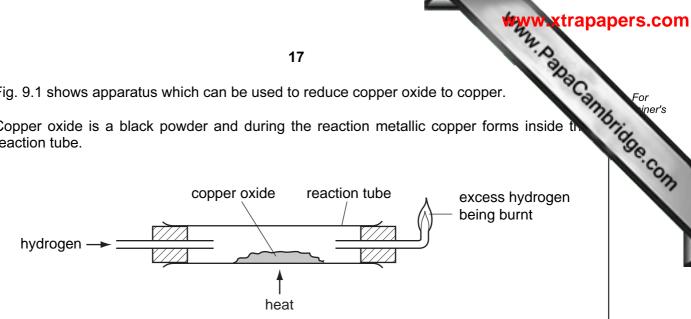
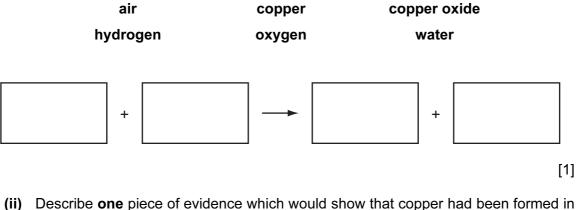
(i)	Name the type of reproduction that is taking place.	
		[1]
(ii)	The new plants that are produced are clones of the parent plant.	
	Explain what is meant by the term <i>clone</i> .	
		••••
		[2]

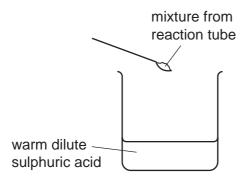
ons. For

(a)	 A student wrote down some properties of alpha, beta and gamma radiations. Draw a line from each property to the correct radiation. 		
	Dra	w a line from each property to the corre	ect radiation.
		stopped by paper	alpha
		contains negatively charged particles	
þ	asse	es through several centimetres of lead	beta
	р	asses through paper but stopped by a few millimetres of aluminium	
		has no mass	gamma
			[3]
(b)	(i)	Gamma radiation can be used to ste gamma radiation makes it suitable for	erilise surgical instruments. What property of this purpose?
			[1]
	(ii) State one other use for radiation from a radioactive source.		
			[1]
(c)	In an experiment a radiation detector was set up and used to measure background radiation. The background radiation in the laboratory was found to be 40 counts per minute.		
	(i)	What is background radiation?	
			[1]
	(ii)	State one source of background radia	tion.
			[1]
	(iii)	•	r the detector and a reading of 1200 counts ne count rate of the radioactive source?
			counts per minute [1]

9 Fig. 9.1 shows apparatus which can be used to reduce copper oxide to copper.

Copper oxide is a black powder and during the reaction metallic copper forms inside to reaction tube.


Fig. 9.1

(a) (i) Select from the list of substances below to complete the word equation for the reaction in Fig. 9.1.

(ii) Describe one piece of evidence which would show that copper had been formed in this reaction. [1] (b) When a student carried out the reaction in Fig. 9.1 she realised the material lend the reaction tube was a mixture of metallic copper and unreacted copper oxide.

WWW. Papa Cambridge.com In order to separate the metallic copper, she stirred the material from the reaction tube with warm dilute sulphuric acid for several minutes. She then filtered the mixture as shown in Fig. 9.2.

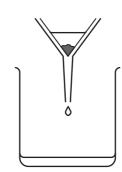


Fig. 9.2

	(i)	Name the copper compound formed when sulphuric acid reacts with copper oxide	е.
			[1]
	(ii)	The copper compound you have named in (i) is soluble.	
		Explain why the method shown in Fig. 9.2 is successful in separating metal copper from the original mixture of copper and copper oxide.	lic
			[2]
(c)	Cop	pper oxide is a compound of a metal and a non-metal.	
	(i)	Name the type of chemical bonding in copper oxide.	
			[1]
	(ii)	Explain why there is a strong force of attraction between the copper and oxic particles in copper oxide.	de
			••••
			[2]

(d) Metallic copper can also be obtained by electrolysis.

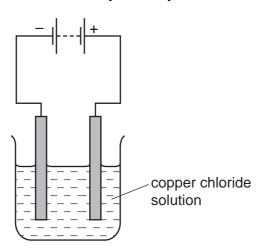


Fig. 9.3

Describe what would be seen at each of the electrodes when the electrolysis shown in Fig. 9.3 is carried out.

at the positive electrode	
at the negative electrode	
	[2]

DATA SHEET	The Periodic Table of the Elements
------------	------------------------------------

					2	0				WWW.	Axtrapapers.co
						0	1	1			apar 1
	0	4 He ium	20 Ne Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium	Lr Lawrencium 103	SANDA
-	₹		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium	Se.co
	5		16 Oxygen 8	32 S Sulphur 16	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 7	31 P Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100	
	≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66		pressure
Group		l			65 Zn Zinc	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium 97	ture and _I
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64	Curium 96	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	13 at room
					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77		Samarium 62		s is 24 dm
		Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium 61		of any gas
					Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60		ne mole c
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten		Pr Praseodymium 59		lume of o
					51 V Vanadium 23	93 N iobium	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium	The vo
					48 Ti Titanium 22	2r Zirconium 40	178 Hf Hafnium				
					Scandium 21	89 × Yttrium	139 La Lanthanum 57 *	Actinium t	series ries	a = relative atomic massX = atomic symbolb = proton (atomic) number	
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	ж ж а Б ж а	
	-		7 Lithium 3	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	Francium 87	58-71 La 90-103 A	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.