

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES

Answer all questions.

Chemistry practical notes for this paper are printed on page 12

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 9 printed pages and 3 blank pages.

- 1 The upward movement of water through a plant is called the transpiration stream. It provides a continuous supply of water to replace water vapour transpired by the lea Specimen **A** is a twig from a tree. It was removed from a tree a few hours ago.
 - (a) (i) Make a drawing of specimen A in the space below. You need to include no more than two leaves in your drawing.

(ii)	What has caused wilting in some parts of specimen A ?	
		[2]
(iii)	Using a pencil, shade the parts of specimen A that have not wilted.	[1]
(iv)	Why has specimen A not wilted in the shaded area?	
	How does this help the survival of the plant?	
		[2]

[2]

loured For iner's talk. Use a sharp knife or scalpel to make a transverse (cross) section of the stalk. Place this section flat on the white tile. Make a drawing of the section in the space below.

Label the places where you can see the dye with the correct name for the tissue.

(C) The rate of transpiration is dependent on several environmental factors, including the temperature. State **one** other factor.

[1]

[2]

2 You are going to test whether or not the extension of a spring is directly proportional applied force.

(a)

- Hang the spring from the stand. •
- WANN, Papacambridge.com Make sure you have left enough room for the spring to stretch at least 30 cm to ensure • that the coils are just separated.
- Fix the metre rule in a vertical position beside the spring with the zero mark at the • bottom.
- Attach the carrier or a small mass to the spring. •
- With a small piece of plasticine, fix the pin **P** to the spring as shown in Fig. 2.1 so that • the pin acts as a pointer.

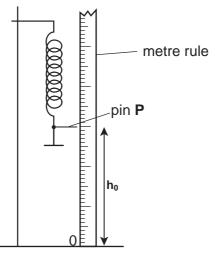


Fig. 2.1

(i) Take the reading on the rule of the height h_0 . Record this value in mm in Fig. 2.2.

Add a 50 g mass to the carrier and read the new height, **h**, of the pointer. Record this value in Fig. 2.2.

Repeat by adding further masses to obtain 3 more sets of readings.

Read and record the new value of **h** after each addition.

(ii) Complete the table, Fig. 2.2. You will see that the mass is to be converted into a force. (1kg is 10 N).

Calculate the total increase in length of the spring each time.

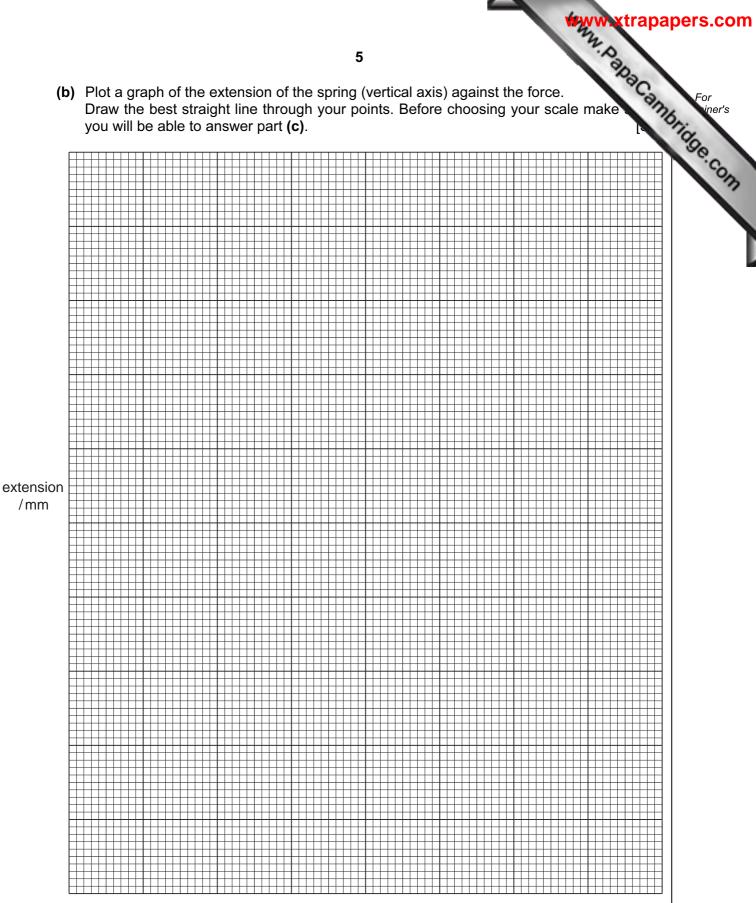
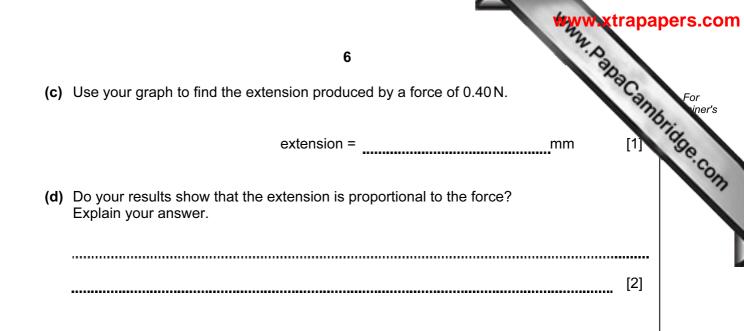

total mass added/g	force/N	pointer reading h /mm	total increase in length (extension) h₀ - h / mm
0	0	h ₀ =	0
50	0.5		

Fig. 2.2


trapapers.com

[4]

(b) Plot a graph of the extension of the spring (vertical axis) against the force.

BLANK PAGE

Www.papacambridge.com 3 You are provided with three solutions, A, B and C. The solutions are known to be su acid, sodium carbonate and calcium hydroxide (limewater), but not necessarily in that on Carry out the following tests to enable you to identify each of the solutions A, B and C.

Some of the tests will produce no visible reaction. Simply record 'no reaction' in the appropriate space.

- (a) (i) Place about 2 cm^3 of solution **A** into a test-tube. Add a small piece of magnesium and record any observation in Fig. 3.1.
 - (ii) Repeat using solution **B** and then solution **C**. Record all your observations in Fig. 3.1.

addition of magnesium to each of solutions A, B and C			
Α	В	С	

Fig. 3.1

(b) You now need to pass carbon dioxide into each solution. Produce the carbon dioxide by adding dilute hydrochloric acid to some solid calcium carbonate, (marble chips) in a test-tube. Immediately after adding the acid to the calcium carbonate, insert the bung and delivery tube. Allow some of the gas produced to be reacted with each of solutions **A**, **B** and **C**. Use about 5cm³ of each solution.

You will need to use a further supply of calcium carbonate and hydrochloric acid to produce the carbon dioxide if the effervescence has ceased before you have tested each solution.

Record your observations in Fig. 3.3.

pass carbon dioxide gas into each of solutions A, B and C			
A	В	С	

[2]

[2]

				apapers.c
			9	
(c)	(i)	Place Recor	about 2 cm ³ of solution A in a test-tube. Add a small quantity of solution d your observation.	Eor iner's [1]
		observ	vation	[1] 1940
	(ii)	Repea	t (i) using solution C instead of B.	COL
		observ	vation	[1]
(d)	Usi	ng the o	observations above suggest the identity of solutions A, B and C .	
	A is	5		
	bec	ause		
	B is	6	,	
	bec	ause		
		•••••		
	C is	6	,	
	bec	ause		
				[4]

BLANK PAGE

10

BLANK PAGE

11

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	12 CHEMISTRY PRACTICAL NO	TES test result
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> -) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH_4^+)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.