

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

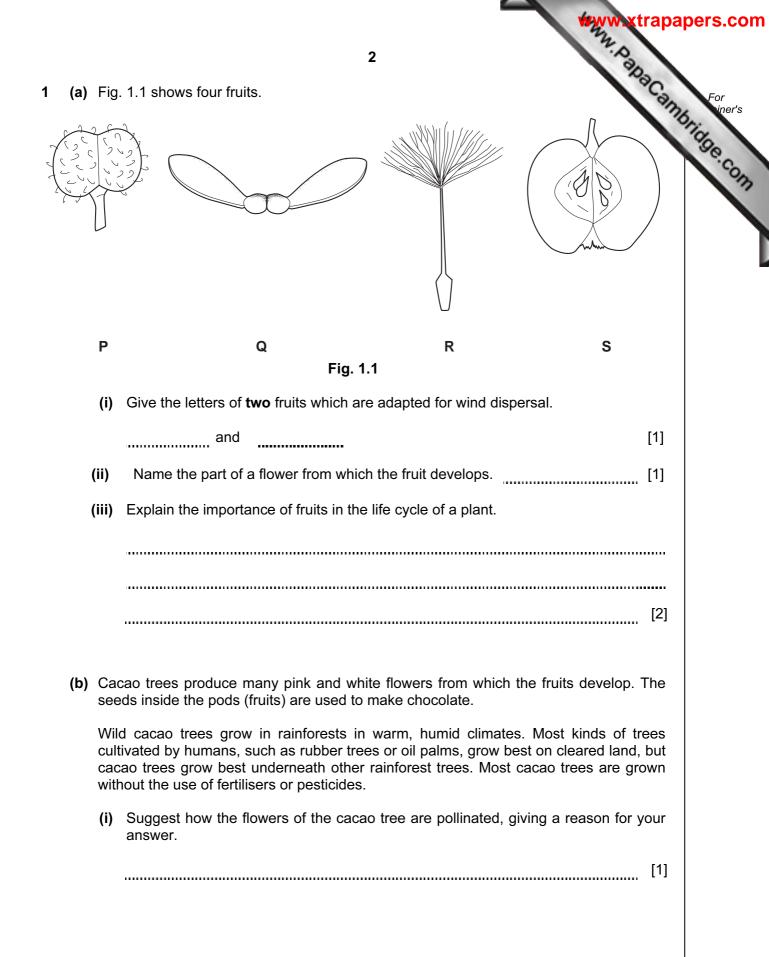
Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.


A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 20 printed pages.

	Mary Mary	ww.xtrapap	pers.com
	3	A.D.	
(ii)	Explain why cultivating cacao trees may cause less damage to rainfor cultivating other trees.	36	For iner's
			.com
		[3]	

www.papaCambridge.com (a) A teacher placed a small piece of potassium into a container filled with chlorine 2

Fig. 2.1 shows what the class observed.

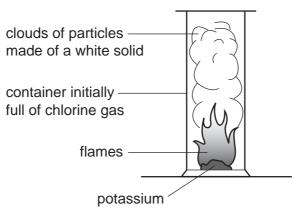


Fig. 2.1

- (i) Suggest the name of the white solid formed when potassium and chlorine react.
 -[1]
- (ii) Fig. 2.2 shows a potassium atom and a chlorine atom.

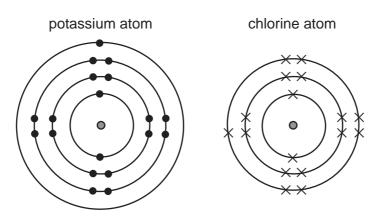
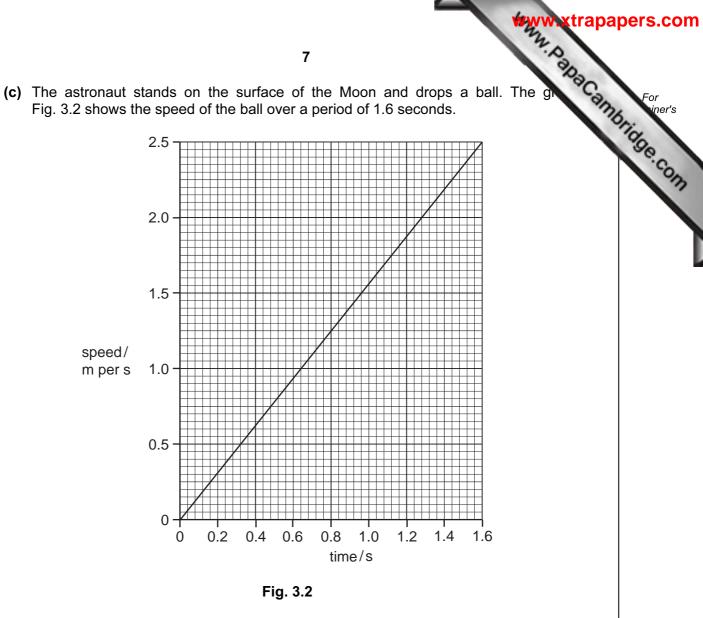
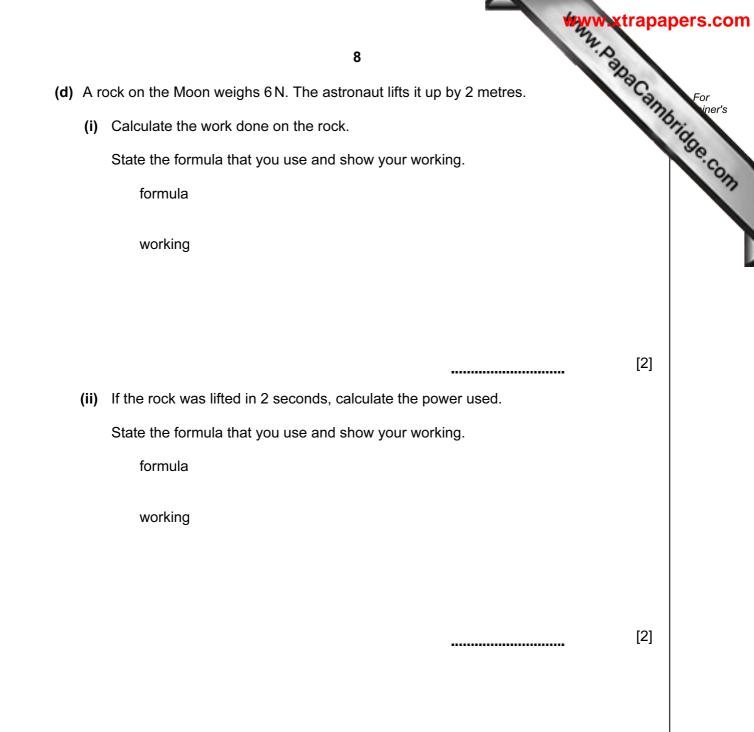


Fig. 2.2


		www.xtrapa	pers.com
		5	
		5 Describe and explain, in terms of electronic structures, what happens potassium and chlorine atoms react with each other. You may draw diagram the space below if it helps you to answer the question.	For iner's
		[4]	
		[4]	
(b)		tallic potassium can be produced by electrolysis of molten potassium chloride. In process, potassium forms at the cathode.	
	(i)	Explain why potassium ions travel to the cathode and not the anode during electrolysis.	
		[1]	
	(ii)	Describe, in terms of electrons, what happens when potassium ions collide with the surface of the cathode.	
		[2]	
		[2]	

signed to the state of the stat (a) Fig. 3.1 shows an astronaut on a space walk. His space suit is designed a dangerous electromagnetic radiation from the Sun reaching the astronaut's body. 3



	(i)	Name two types of electromagnetic radiation that can harm the body.
		1 2 [1]
	(ii)	State one way in which electromagnetic radiation can harm the body.
		[1]
((iii)	All electromagnetic waves travel at the same speed. What is the value of this speed?
		[1]
(b)		e astronaut has a mass of 96 kg. The gravitational field strength on the Moon is but one sixth of that on the Earth.
	Sta	te the difference, if any, between
	(i)	the mass of the astronaut on the Earth and on the Moon,
		[1]
	(ii)	the weight of the astronaut on the Earth and on the Moon.
		[1]

- (i) On the same graph, sketch a line to show the speed of the same ball if it was dropped on Earth. [1]
- (ii) Explain your answer to (c)(i).

[1]

For iner's

4 Fig. 4.1 shows a section through a human heart, seen from the front.

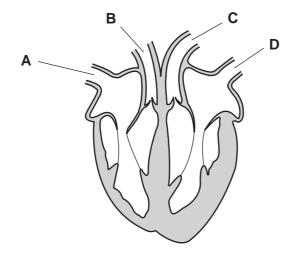
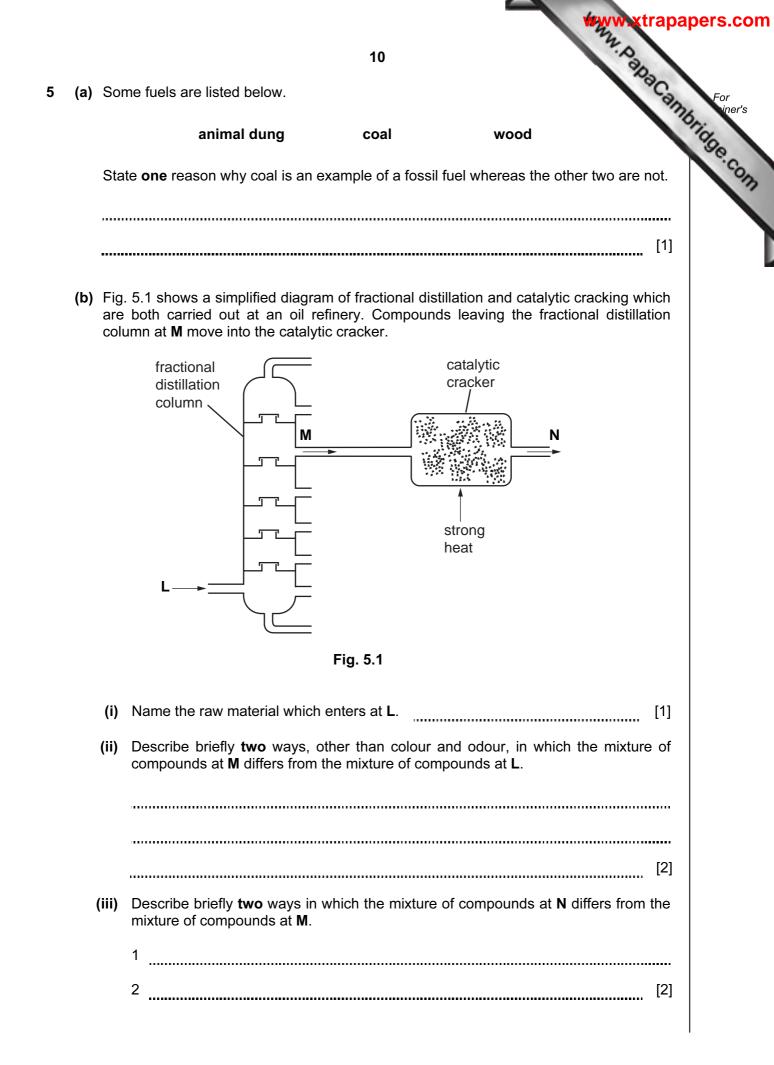



Fig. 4.1

(a) (i)	Name the type of tissue found in the walls of the heart, as shown in the shaded parts in Fig. 4.1.
	[1]
(ii)	Describe how this tissue is supplied with oxygen.
	[2]
(iii)	Give the letters of the two labelled blood vessels that contain oxygenated blood.
	and [1]
• •	nts also have transport systems in which liquids flow through vessels. However, y do not have a pump like the heart.
(i)	Explain what makes water flow up through the xylem vessels in a plant.
	[2]
(ii)	Describe how sugars, made in a plant's leaves, are transported to its roots.
	[2]

		www.xtrapa	oers.cor
		11	
	(iv)	11 Some of the compounds in the mixture at N can be used in a polymerisation. Explain why addition polymers can be made from molecules in the mixture at N but not from molecules in the mixture at M.	For iner's
		Explain why addition polymers can be made from molecules in the mixture at \mathbf{N} but not from molecules in the mixture at \mathbf{M} .	149e.co.
		You may draw a diagram if it helps you to answer this question.	777
		[2]	
(c)	As	tudent investigated the combustion products of the liquid fuel ethanol.	
	He	observed that a gas and a colourless liquid were produced.	
	(i)	The student applied a chemical test to the colourless liquid and found that it was water.	
		Describe a suitable chemical test for water and its result.	
		[2]	
	(ii)	Complete the equation below for the combustion of ethanol.	

 C_2H_6O + $\rightarrow 2CO_2$ + $3H_2O$ [2]

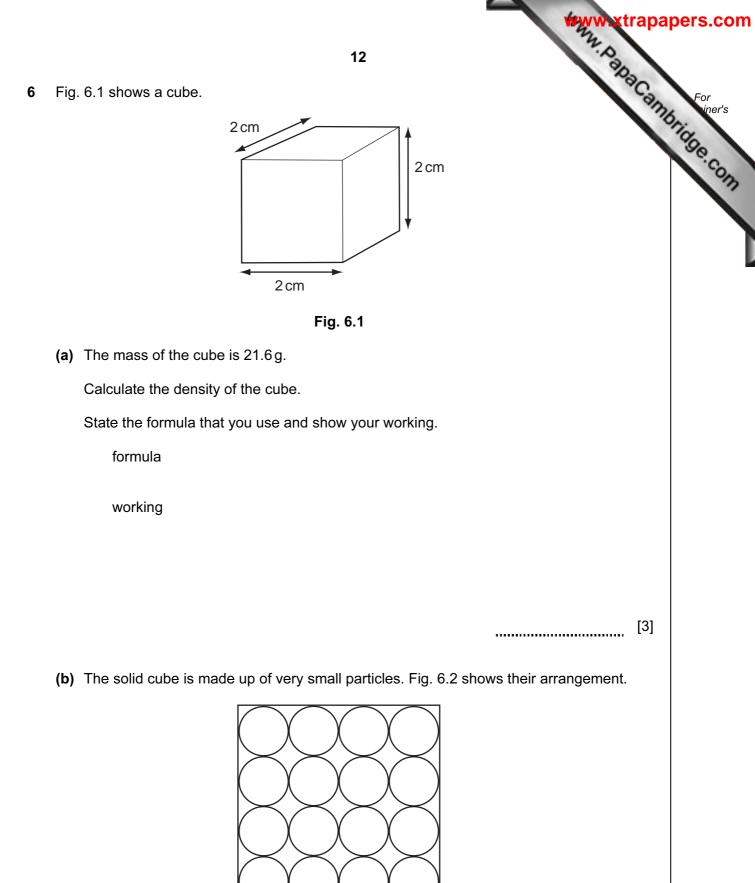
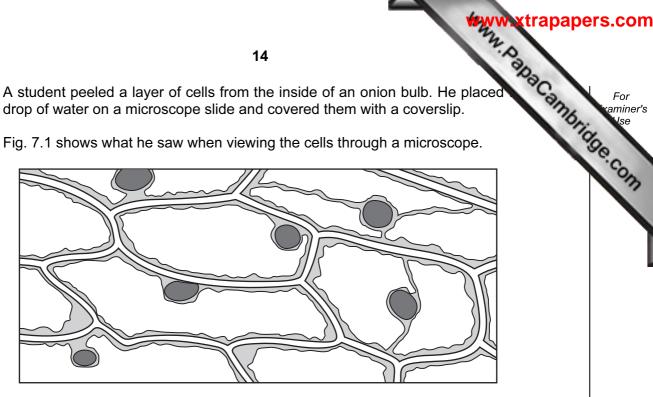



Fig. 6.2

			www.xtrapape
	13		. A
(i) Complete the diagr and in a gas.	rams below to show the a	arrangement of particles	in a Marcannut
			in a la combine
\bigcirc			
liquid		gas	[2]
(ii) Explain your answe	er to (b)(i) in terms of for	ces between particles.	
			[2]
Explain, in terms of part	ticles, why a solid expan	ds when heated.	
			[1]
Describe one problem o	caused by a solid metal e	expanding when it gets h	not.
			[2]

7 (a) A student peeled a layer of cells from the inside of an onion bulb. He placed drop of water on a microscope slide and covered them with a coverslip.

Fig. 7.1 shows what he saw when viewing the cells through a microscope.

(i) The cells in Fig. 7.1 are similar to each other.

Give the name for a group of similar cells.

.....

- (ii) State two ways in which the cells in Fig. 7.1 differ from animal cells.
 - 1 2 [2]
- (b) The student replaced the water on the slide with a drop of concentrated sugar solution. He waited for five minutes and then looked at the cells through the microscope again.

Fig. 7.2 shows what he saw.

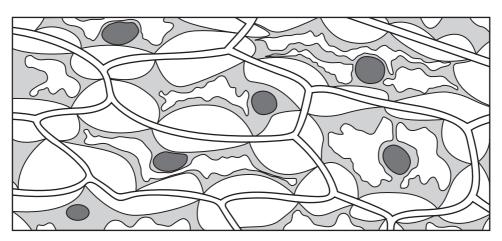


Fig. 7.2

w.xtrapapers.com

[1]

		www.xtrapa	pers.com
		15	
	(i)	On Fig. 7.2, label a partially permeable membrane.	For
	(ii)	15 On Fig. 7.2, label a partially permeable membrane. Using your knowledge of osmosis, explain what has happened to the centric Fig. 7.2.	Shidde Co.
			1
		[3]	
(c)		on cells often contain stores of starch. When a person eats an onion, the starch is ested.	
	Des	scribe how starch is digested in the human alimentary canal.	
		[3]	

(a) A student used the apparatus in Fig. 8.1 to investigate the rate of a reaction. 8

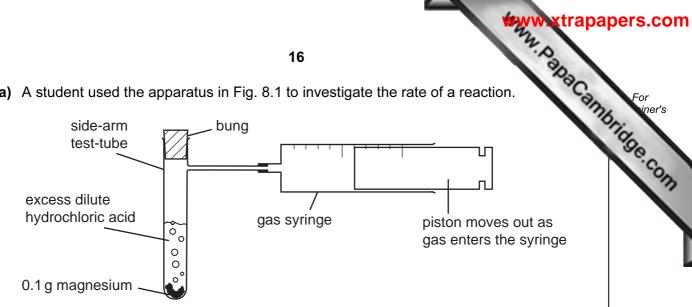


Fig. 8.1

The student dropped the magnesium into the acid contained in the side-arm test-tube and put in the bung. A stopwatch was used to time how long it took for 50 cm³ of gas to collect in the syringe.

The student carried out four experiments A, B, C and D, and the results are shown in Table 8.1.

experiment	time for 50 cm ³ of gas to collect in the gas syringe/seconds
А	36
В	18
С	144
D	72

Table 8.1

(i) Explain how the results show that experiment **B** had a higher rate of reaction than experiment A.

.....[1]

- (ii) The only variable (factor) which was different between the four experiments A, B,
 - **C** and **D** was the concentration of the dilute hydrochloric acid.

Using the letters A, B, C and D, list the experiments in order of decreasing acid concentration.

	(highest concentration)	
	(lowest concentration)	[1]
•••••••		

16

MAN. PapaCanibridge.com (iii) Fig. 8.2 shows a piece of magnesium in a beaker of dilute hydrochloric action hydrogen ions, present in all aqueous acids, are shown by the symbol • .

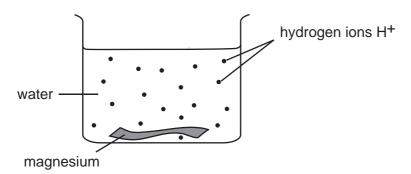


Fig. 8.2

Explain, in terms of ions, why the rate of reaction will change when the concentration of the acid is changed.

..... [3]

(b) Magnesium reacts with hydrochloric acid to form magnesium chloride and hydrogen gas.

The chemical formula for magnesium chloride is MgCl₂. Use the Periodic Table on page 20 to calculate the relative formula mass of magnesium chloride.

Show your working.

[2]

in and processing For in er's (a) Fig. 9.1 shows a teacher with a torch (flash light). He switches the torch on and 9 at the mirror.

Fig. 9.1

A ray of light from the torch reflects off the mirror.

Use a ruler to draw a ray of light

- (i) from the torch to the mirror,
- (ii) reflecting off the mirror.
- (b) A torch contains two cells providing a total voltage of 3.0 V across the lamp. When the torch is lit, the current flowing through the lamp is 0.3 A.
 - (i) Calculate the resistance of the lamp.

State the formula that you use and show your working.

formula

working

////////////

[2]

[2]

.....

the lan For iner's (ii) To measure the current through the lamp and the voltage across the land student set up the circuit in Fig. 9.2.

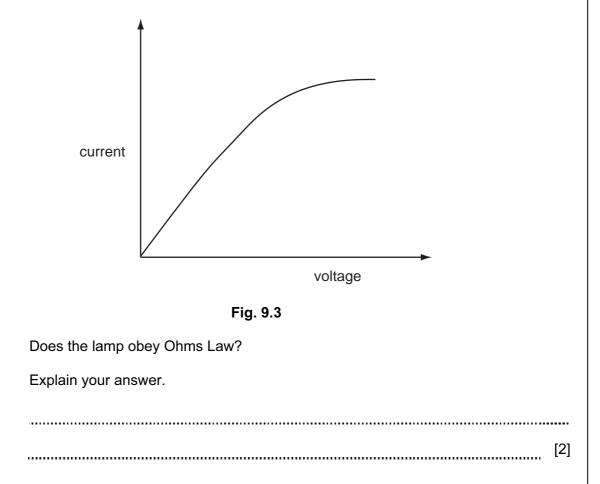



Fig. 9.2

The student sketched a graph of current against voltage for the lamp. This is shown in Fig. 9.3.

				20	Manual Market Strategy Strateg
					20ac
	0	Helium 4	2 20 10 Neon Argon	18 84 84 84 131 55 554 Xenon 554 Xenon 86 Radon	175 Lutetium 71 Lawrencium
	۲I		19 9 35.5 Chlorine	17 80 Br 35 127 127 1 53 Iodine 53 Astatine Astatine	Viterbium Nobelium 102
	⋝		16 32 Sultur	16 79 Selenium 34 128 128 128 128 128 52 52 84 Polonium 84	69 Thulium Mendelevium 101
	>		14 7 Nitrogen 31 Phosphorus	15 75 75 AS 33 Arsenic 33 Sb 122 Sb 209 209 83 Bisenuth	167 Fermium 100 Fermium
	≥		Carbon Carbon Silicon	14 73 Germanium 32 37 119 50 71n 50 82 107 82 107 82 107	_ E
	≡	-	11 B Boron 30ron 27 A 1 minium	13 70 70 70 31 Galium 115 115 115 116 115 204 204 204 204 81 T 1 81 T 1	140 141 144 145 155 155 165 165 165 165 165 165 165 165 165 165 165 166 167 165 165 165 166 167 165 165 165 166 167 165 165 166 167 165 165 166 167 165 166 167 165 166 167 166 167 167 167 167 167 167 166 167 166 167 166 167 166 167 166 167 166 167 167 167 167 167 166 166 166 166 166 166 166 166 166 166 166 1
ıts		_		65 20 20 20 80 80 80 80 80 80 80 80 80 80 80 80 80	Befreium 65 BR BR 159 97 Breium 65 97 Breium
Periodic Table of the Elements Group				64 64 Copper 108 197 197 79 608 79 608	and the second s
le of the	<u>+</u>			59 Nickel 106 106 195 195 195 78 195 78	at room
odic Table Group				59 Cobath 27 27 27 27 27 27 27 27 27 27 27 27 27 2	Putontum e
The Peric		Hydrogen		56 Fee loon 26 loon 26 loon 26 loon 26 loon 26 loon 24 Ruthenkum 44 44 20 00 00 00 00 00 00 00 00 00 00 00 00	Promethium 61 83 83 83 83 83 83 83 83 83 83 83 83 83
			~	55 Manganese 25 25 25 36 anganese 25 25 25 36 37 43 43 186 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7	144 Neodymium 60 1238 92 238 92 Uranium 92 Uranium 92 016 mole of
				52 Chromitum 24 Molybdenum A00ybdenum 42 184 124 7 7 7 7	Praseodymium 659 659 66 6
				51 51 51 51 51 51 51 51 51 51	The volt
				atanium 178 178 178 178 178	mass
				45 SC Bandium 22 89 89 89 40 139 139 139 139 81 327 227 227 227	Activition 89 Activition 901 Series 1 Series 1 Series a = relative atomic mass x = atomic symbol b = proton (atomic) number
	=	-	9 Berylium 4 24 Magnesum	20 70	Radium hand hand inoid
	_		23 Sodium	aestum aestum	B-71 Lanth B-71 Lanth B-71 Lanth B-71 Lanth B-7 B-7 B-7 B-7 B-7 B-7 B-7 B-7 B-7 B-7
			n	19 00 19 00 11 10 10 10 10 10 10 10 10 10 10 10	*58- *58- Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of