

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Stage Com

	i	

CANDIDATE NAME								
CENTRE NUMBER					CANDID NUMBER			

COMBINED SCIENCE

0653/23

Paper 2 (Core)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 21 printed pages and 3 blank pages.

- 1 Coral reefs are found in shallow seawater. Limestone is a common type of rock found Earth's crust. Both coral reefs and limestone are made mainly of the ionic compocalcium carbonate.
 - (a) A student used the apparatus shown in Fig. 1.1 to test a rock sample to discover whether or not it is limestone.

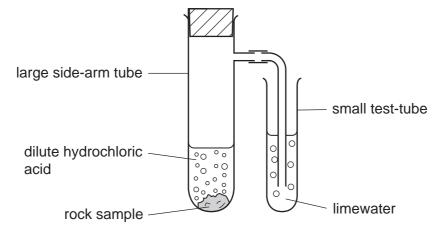
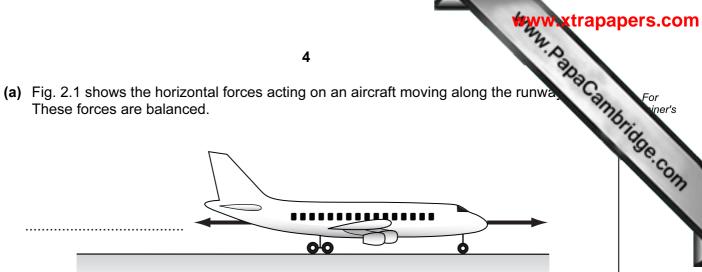


Fig. 1.1


The student observed that a gas was given off and that the limewater in the small test-tube became cloudy.

(i)	Name the gas that was given off.	[1]
(ii)	State the chemical formula of hydrochloric acid.	
		[1]
(iii)	After some time, the student observed that the gas stopped forming, but a sm piece of the rock sample remained in the large side-arm tube.	nall
	Explain why gas stopped forming.	
		[2]
(iv)	The student carried out a flame test on the solution that remained in the large side arm tube. This test produced an orange-red colour.	-et
	Name the element that this observation suggests is contained in the rock sample) .
		[1]

		www.xt	rapapers.cor
		3	
(b)	In r	ecent years, the amount of carbon dioxide dissolving in seawater has increas	For siner's
	Dur	ring this period, many coral reefs have become weakened and damaged.	Dride 18
	(i)	State and explain briefly how an increase in carbon dioxide concentration affect the pH of seawater.	will Tabe COM
			[2]
	(ii)	Suggest a reason why an increase in carbon dioxide concentration might responsible for damage to coral reefs.	be
			 [1]

(a) Fig. 2.1 shows the horizontal forces acting on an aircraft moving along the runwa. These forces are balanced.

2

		Fig. 2.1	
	(i)	The arrow to the right represents the driving force produced by the engines.	
		On the diagram, name the other force.	[1]
	(ii)	Explain what is meant by the phrase forces are balanced.	
			[1]
((iii)	Describe the movement of the aircraft when these forces are balanced.	
			[1]
(b)	In tl	ne air, the aircraft travels at 80 m/s for one hour.	
	Cal	culate the distance travelled.	
	Sta	te the formula that you use and show your working.	
		formula used	
		working	
		m	[2]

		www.xtr	apapers.com
		5	
(c)		ople who fly frequently have greater exposure to ionising radiation than thousand fly.	For iner's
	(i)	Explain why exposure to ionising radiation may be harmful.	Tage
			[2]
	(ii)	This ionising radiation is cosmic radiation from outer space. This is one source background radiation.	of
		State one other natural source of background radiation.	
			[1]
(d)		e aircraft is able to navigate using radar. This involves using microwaves. These at of the electromagnetic spectrum.	are
		me one other wave which is part of the electromagnetic spectrum and give a use radiation.	for
	nan	ne	
	use		[2]

volume of

				_
OYVAEN				
uxyyen	Т	─	-	_
, 0		1		

(b) Describe how oxygen is transported from the lungs to a cell in a human muscle.

•••••	 	••••••	•••••	•••••	•••••
ោ					
[2]					

(c) An athlete ran on a treadmill at a slow speed for 5 minutes. She then ran on the same treadmill at a faster speed for 5 minutes.

Fig. 3.1 shows the volume of oxygen she used per minute during both runs.

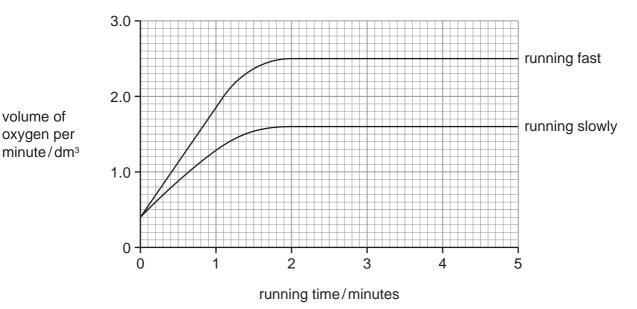


Fig. 3.1

(i) State the volume of oxygen used per minute by the athlete before she began to run.

dm ³ [1

(ii) Describe how the volume of oxygen used per minute during the fast run differs from the slow run.

 	 	•••••

[2]

	(iii)	Suggest a	an explanat	ion for th	ne differe	nces you h	ave describ	ed in (ii).	aCan.
									 [2]
(d)			athletes of this reduce						
	Exp	olain what i	s meant by	emphys	sema.				
				•••••					 [1]

4 Fig. 4.1 shows an electric hairdryer.

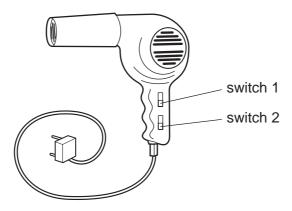


Fig. 4.1

(a) Fig. 4.2 shows the circuit diagram for the hairdryer.

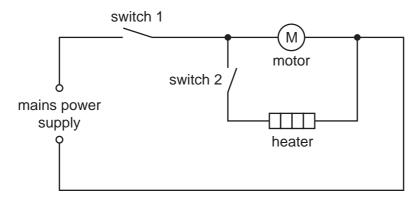


Fig. 4.2

(i) State which of the switches must be closed (on) for the heater in the hairdryer to work.

[1]

[2]

(ii) A student wanted to determine the resistance of the heater.

Fig. 4.3 shows the circuit he built to measure the current passing through the heater and the potential difference across the heater.

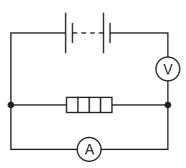


Fig. 4.3

His experiment did not work because his circuit was incorrect.

Draw the correct circuit in the space below.

(b)	The	e electricity used in the hairdryer was generated at a power station.	
	(i)	Name a fossil fuel that can be used in power stations.	
			[1]
	(ii)	Power is transmitted from the power station over large distances.	
		A high voltage is always used. Explain why.	
			[4]

The high voltage is produced by a transformer.

Fig. 4.4 shows a simple transformer.

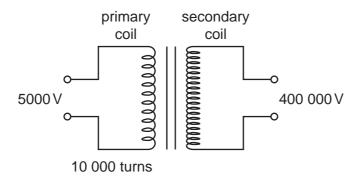


Fig. 4.4

(iii) Use the equation

$$V_p/V_s = N_p/N_s$$

to calculate the number of turns in the secondary coil.

Show your working.

	number of turns =	[1]
(iv)	Transformers are also used between power lines and people's houses.	
	Explain why.	
		[2]

5 Fig. 5.1 shows a section through a flower.

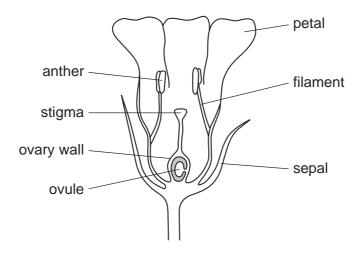


Fig. 5.1

(a)	(i)	State the	function	of each	of the	following	parts	of the	flower
-----	-----	-----------	----------	---------	--------	-----------	-------	--------	--------

petal	
anther	[2]
Name the part of the flower that	
develops into a seed,	
develops into a fruit.	[2]

(b) Flowers are involved in sexual reproduction.

(ii)

Complete the table to show whether each statement is true for asexual reproduction, sexual reproduction, both or neither.

Use a tick (\checkmark) for a correct statement and a cross (x) for an incorrect statement. You must write either a tick or cross in each space in the table.

The first statement has been completed for you.

statement	asexual reproduction	sexual reproduction
gametes are involved	×	✓
new individuals are produced		
a zygote is produced		
offspring are always genetically identical		

Nordic gold is an alloy of four metals used to make coins. 6

12

Table 6.1 shows information about the metals contained in Nordic gold.

Table 6.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al_2O_3
copper		CuFeS ₂
tin	1	SnO ₂
zinc	5	ZnS

a) (i)
(ii)
(iii)
(iv)
b) (i)
(ii) (iii)

		www.xtrapa
		13
(ii)	State and explain which substance is oxidised when tin is extracted from tin substance which is oxidised
		substance which is oxidised
		substance which is oxidised explanation
		[2]
c) (i)	Aluminium is extracted from the ionic compound aluminium oxide by electrolysis.
		Explain the meanings of the following terms that are important in electrolysis.
		cathode
		electrolyte
		[3]
(ii)	State how the position of aluminium in the Periodic Table shows that aluminium atoms have three electrons in their outer shell.
		[1]

14

BLANK PAGE

Www.xtrapapers.com

7 (a) Fig. 7.1 shows a mother pushing her child in a baby buggy. She uses a force of

Fig. 7.1

The baby buggy is pushed 2000 m.

Calculate how much work has been done.

State the formula that you use and show your working.

formula used

working

J [2]

At the top of the oscillation, the child and swing are momentarily at rest.

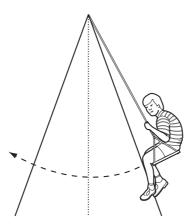


Fig. 7.2

(i) Write the correct energy type in the space to complete the box.

рс	gravitational tential energy at the top of he oscillation	=	gravitational potential energy at the bottom of the oscillation	+	energy at the bottom of the oscillation	+	energy losses	s
							J	[1]
	(ii) Suggest a	form	of energy which is	lost fr	om the system.			
								[1]
	(iii) Suggest w	here	the lost energy goe	S.				
								[1]
(c)	The child weig	hs 40	0 N.					
	The Earth's gr	avitat	ional field strength i	s 101	N/kg.			
	(i) State the	mass	of the child.					

kg [2]

www.xtrapa	pers.com
3.70	
acam,	For iner's
	Tide
	C. COM

(ii)	The average density of the human body is $1020\mathrm{kg/m^3}$.
	Calculate the volume of the child.
	State the formula that you use and show your working.
	formula used
	working

\mathbf{m}^3	[1]
	-

Fig. 8.1 shows a tree frog that lives in a tropical rain forest.

Fig. 8.1

(a)		Tree frogs feed on insects. Enzymes in their alimentary canal break down large molecules in the insects into small ones.							
	(i)	State the correct biolog	ical term for thi	s process.		[1]			
	(ii)	Explain why this proces	s is necessary	for the frog's survi	val.				
						[1]			
	(iii)	i) Use words from the list to complete the sentences about enzymes.							
		carbohydrates	cells	denatured	dissolved				
		hydrogen	killed	oxygen	proteins				
		Eng. (1990)		that act	alve a ala amica l'us a et	iono			
		Enzymes are		that cat	aiyse chemicai react	ions			
		in living organisms. One	e example of a	n enzyme is catala	se, which breaks do	wn			
		hydrogen peroxide to w	. Enzyme	es					
		res.	[3]						
(b)	Tro	pical rain forests have a	high species d	iversity.					
(i) Explain what is meant by species diversity.									
						[1]			

(ii)	Many species of tree frog have become extinct in the last ten years.	2
	Suggest how the loss of tree frogs from the rain forest could damage the ecosystem.	16
	[2]	

www.xtrapapers.com

			20					
9	Hydrocarbons are compounds which contain only the elements hydrogen and carbon							
	(a)	78 mer's						
		(i)	State one natural source of methane.	For siner's				
				[1]				
		(ii)	Complete the displayed (graphical) formula of a methane molecule.					
			H -					
			C					
				[2]				
		(iii)	Carbon dioxide and carbon monoxide are compounds released into atmosphere when methane burns.	the				
			Describe one environmental disadvantage of each compound.					
			carbon dioxide					
			carbon monoxide					
				[3]				

(b) Table 9.1 shows the molecular formulae and boiling points of four hydrocarbons.

Table 9.1

molecular formula	boiling point/°C 69 174			
C ₆ H ₁₄	69			
C ₁₀ H ₂₂	174			
C ₁₂ H ₂₆	216			
C ₅ H ₁₂	36			

(i)	Name a process which could be used to separate a mixture of the compounds Table 9.1.					
	[1]					
(ii)	Use the information in Table 9.1 to describe how the boiling point of a hydrocarbon is affected by the mass of its molecules.					
	[2					

BLANK PAGE

Www.xtrapapers.com

BLANK PAGE

Www.xtrapapers.com

The Periodic Table of the Elements DATA SHEET

									1	WWW.	Papa Cambridge Com
					2	4		1			Papa
	0	4 He Helium	20 N eon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium	Lr Lawrencium 103	Sandh
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	Se. Con
	 		16 Oxygen 8	32 S Sulfur 16	Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 7	31 P Phosphorus	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium	·
	>		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
	=		1 B Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium 66		oressure
		'			65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium 97	ture and p
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		Gd Gadolinium 64	Cm Curium 96	tempera
dn					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	1 ³ at room
Group					59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Iridium		Sm Samarium 62		s is 24 dm
		T Hydrogen			56 Te Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61		The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
		'			Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60		ne mole c
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59		lume of o
					51 V Vanadium 23	93 Nbb Niobium	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium	The vo
					48 Ti Titanium	2r Zirconium	178 # Hafnium			mass	
					Scandium 21	89 ×	139 La Lanthanum 57 * 7	227 AC Actinium †	series ries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	
	=		9 Be Beryllium	24 Mg Magnesium	Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	x = x = b = p	
	_		Lithium 3	23 Na Sodium	39 Potassium	Rubidium 37	133 CS Caesium 55	Francium 87	58-71 Lar 90-103 Ar	Key b	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.