

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

VS ATTACHER COM

COMBINE
CENTRE NUMBER
NAME

				CAND	IDATE			_

NUMBER

BINED SCIENCE

Paper 3 (Extended)

October/November 2011

1 hour 15 minutes

0653/31

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

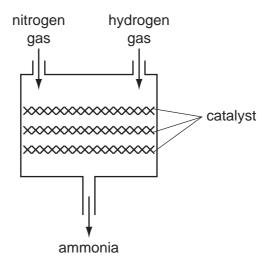
The number of marks is given in brackets [] at the end of each question or part question.

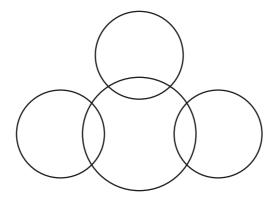
For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 19 printed pages and 1 blank page.

1 The chemical reaction involved in the manufacture of ammonia requires an iron catal

Fig.1.1 shows a simplified diagram of the reaction vessel in which ammonia is made.

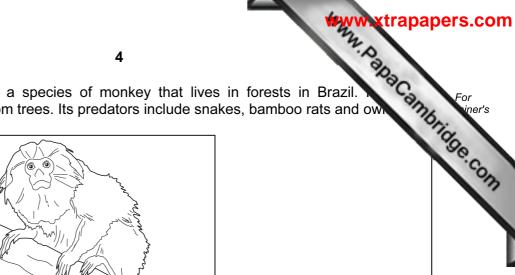



Fig. 1.1

(a) (i)	Explain the meaning of the term <i>catalyst</i> .
	[2]
(ii)	Iron is a member of the family of metals which lies between scandium and zinc in the Periodic Table.
	Name this family of metals. [1]
(iii)	The iron catalyst is prepared by reacting iron oxide with hydrogen gas.
	The symbolic equation below for this reaction is not balanced.
	Complete the balancing of the equation.
	$Fe_3O_4 + \dots H_2 \longrightarrow \dots Fe + \dots H_2O$ [2]
(iv)	Explain, in terms of the loss or gain of electrons, whether iron is oxidised or reduced in the reaction in (iii).
	[2]

(v) Calculate the relative formula mass of iron oxide, Fe_3O_4 . Show your working.

[2]
 L4.


- (b) Complete the bonding diagram below to show
 - the chemical symbols of the elements in a molecule of ammonia,
 - the arrangement of the outer electrons of each atom.

[3]

[3]

The golden lion tamarin is a species of monkey that lives in forests in Brazil. 2 includes fruits and nectar from trees. Its predators include snakes, bamboo rats and own

(a) (i) In the space below, construct a food web involving golden lion tamarins.

(ii) Using your knowledge of energy flow through food chains, explain why predators such as owls are usually rarer than the prey on which they feed.

(b) Golden lion tamarins are important for the dispersal of seeds from many species of trees. They eat the fruits and then egest the seeds in their faeces.

An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 2.1 shows the results of a study in which the distances of the tamarin's faeces from one tree were measured.

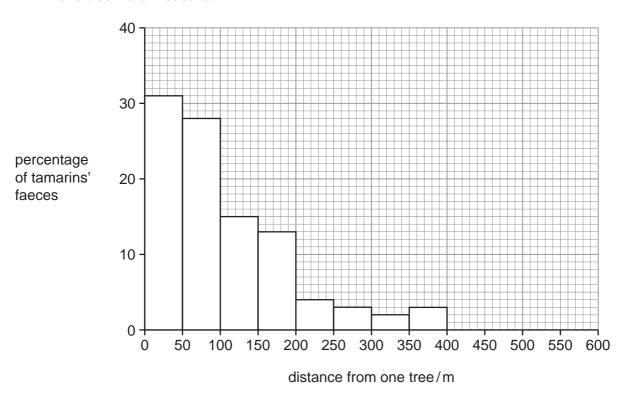
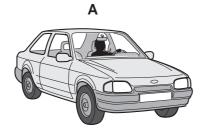


Fig. 2.1

(i) Describe the distribution of golden lion tamarin faeces in relation to this tree.


[2	 2]
(ii) Suggest how the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds.	า
	••
[3	3]

6

BLANK PAGE

Www.xtrapapers.com

Fig. 3.1 shows two cars.

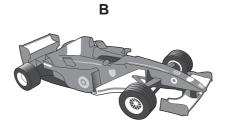


Fig. 3.1

(a)	Explain which of these cars, A or B , is less likely to overturn if it goes round a corne high speed.	r at
		[2]
(b)	Car B took 1.5 hours to complete a race of 330 kilometres.	
	Calculate the average speed of the car in kilometres per hour.	
	State the formula that you use and show your working.	
	formula used	
	working	
		[2]

(c) Fig. 3.2 shows the speed-time graph for the racing car over a short period.

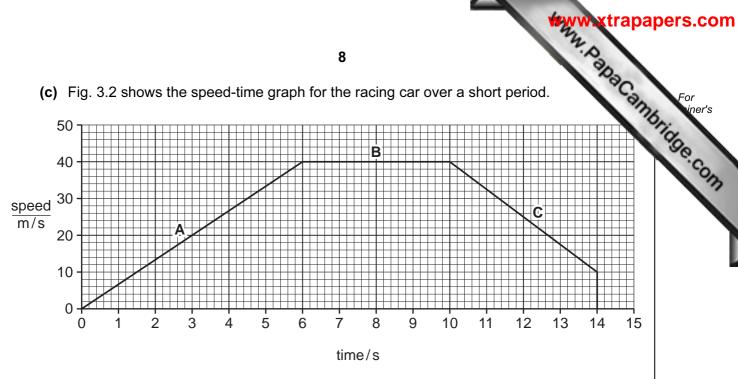


Fig. 3.2

(i)	Describe the motion of the racing car during	
	section B ,	

section C. [2]

(ii) Calculate the distance travelled over the first 10 seconds.

[2]

(iii) The car is accelerating during section A.

Calculate the acceleration.

Show your working.

Show your working.

[2]

(iv) The car and driver have a total mass of 1500 kg.
Calculate the force that produced the acceleration during section A.
State the formula that you use and show your working.
formula used
working

[2]

[1]

(a) Fig. 4.1 shows some of the structures involved in a reflex action.

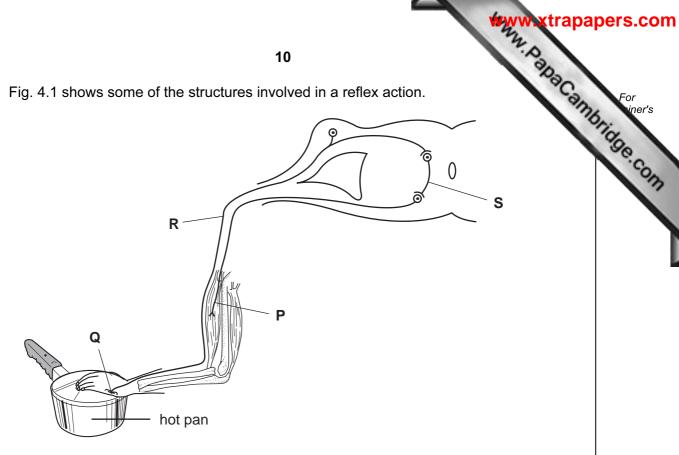


Fig. 4.1

(i) State the letter that is labelling each of these structures.

		a receptor	
		a sensory neurone	[2]
	(ii)	On Fig. 4.1, draw one arrow on structure R and one arrow on structure S to she the direction in which a nerve impulse travels.	ow [1]
	(iii)	On Fig. 4.1, label one structure that is part of the central nervous system.	[1]
	(iv)	In this reflex action, touching the hot pan causes arm muscles to contract a move the arm away.	nd
		Describe one advantage of this being a reflex action, rather than a volunta action.	ary
			[1]
(b)	Ead	ch neurone has a nucleus, which contains chromosomes made of DNA.	
	(i)	Name one type of cell in the human body that does not contain a nucleus.	
			[1]
	(ii)	In humans, a sperm cell has 23 chromosomes.	
		Suggest the number of chromosomes that is present in a neurone.	

5 (a) Fig. 5.1 shows a piece of magnesium ribbon which a student has just dropped container of dilute sulfuric acid.

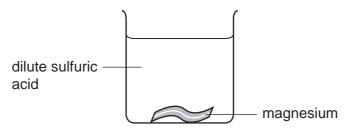


Fig. 5.1

	(i)	State how an increase in temperature will change the rate at which the magnesium and acid react.
	(ii)	Explain your answer to (i) in terms of particles.
		[2]
(b)		furic acid containers are often made of poly(ethene). Poly(ethene) is a polymer ch is formed from hydrocarbon monomers.
	(i)	Suggest one property of poly(ethene) which makes it suitable for making sulfuric acid containers.
		[1]
	(ii)	Ethene is an unsaturated hydrocarbon which is manufactured from saturated hydrocarbons by cracking.
		Outline the process of cracking.
		[2]

[2]

Ammel For iner's (a) Fig. 6.1 shows the circuit diagram of a circuit constructed by a student. Ammer A₂, A₃, A₄ and A₅ are used to measure current. 6

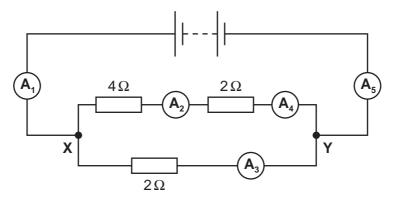


Fig. 6.1

(i) The readings on ${f A}_2,\,{f A}_3$ and ${f A}_5$ are shown in Table 6.1.

Table 6.1

Ammeter	Reading
A_2	2A
A ₃	6A
A ₅	8 A

he readings on A ₁ and A₄ .		
	A ₄	[2]
ower input to one of the 2Ω resistors is 7	72W.	
ate how many joules of energy are trans	sferred in 20 seconds.	
he formula that you use and show your	working.	
rmula used		
orking		
	ower input to one of the 2Ω resistors is 7 rate how many joules of energy are trans the formula that you use and show your ranks used	wer input to one of the 2Ω resistors is $72W$. ate how many joules of energy are transferred in 20 seconds. The formula that you use and show your working.

	N 4				_
ww	/XXTI	202	Der:	s.co	П
Ut.			P		
12					
67.	-				

		www.xtra
		13 M. D.
	(iii)	Calculate the total resistance between X and Y .
		State the formula that you use and show your working.
		Calculate the total resistance between X and Y . State the formula that you use and show your working. formula used
		working
		[3
)		nsformers increase the voltage of the electricity generated at a power station befor asmission through power lines.
	(i)	State why this is done.
		[
	(ii)	A transformer changes the voltage from 25 000 V to 600 000 V.
		Use the equation
		$V_p/V_s = N_p/N_s$
		to calculate the ratio of the number of turns on the primary coil to the number of the secondary coil.
		[2

7 (a) Table 7.1 shows some information about enzymes found in the human alincanal.

Complete the table.

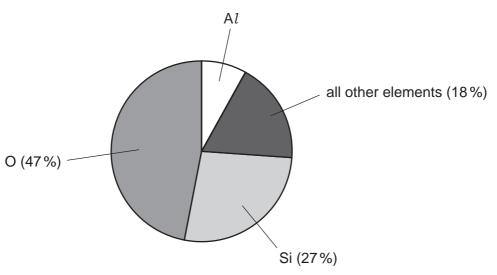
Table 7.1

enzyme	one site of action	type of nutrient that is broken down	product that is formed
	mouth		
		protein	

[3]

(b) In some parts of the world, people are unable to get enough food or to eat a balanced diet. Young children in some regions of Asia may have a diet that consists mostly of rice, while in some parts of Africa a young child's diet may consist mostly of cassava.

Table 7.2 shows the main nutrients present in 100 g of white rice and 100 g of cassava.


Table 7.2

nutrient	white rice	cassava
protein/g	5.0	1.2
carbohydrate/g	58.6	34.7
fat/g	0.4	0.3

(i)	A diet that consists mostly of rice is better for a young child than a diet consists mostly of cassava.	that
	Use the information in Table 7.2 to explain one reason why this is so.	
		[2

	200
(ii)	Carbohydrates include sugars and starch. Describe how a student could sample of cooked rice to find out if it contains reducing sugar.
	[3]
iii)	The parts of a cassava plant that are used as food are the roots, which store carbohydrate in the form of starch. The cells in the cassava roots are provided with carbohydrates that have been made by photosynthesis in the leaves.
	Describe how carbohydrates that have been made in the cassava plant's leaves are transported to the roots.
	[2]

8 Fig. 8.1 shows some data about the percentage composition by mass of the Earth's

			Fig. 8.	1		
(a)	(i)	State the percentage	e by mass of alum	ninium in the Eart	h's crust.	
						[1]
	(ii)	State which of the elements in the sect	•	•	•	number of
		39	89	139	1089	
		Explain briefly how y	ou chose your ar	nswer.		
		number				
		explanation				
						[1]

(b) Aluminium metal may be obtained by the electrolysis of molten aluminium oxide.

Fig. 8.2 shows a simplified diagram of this process.

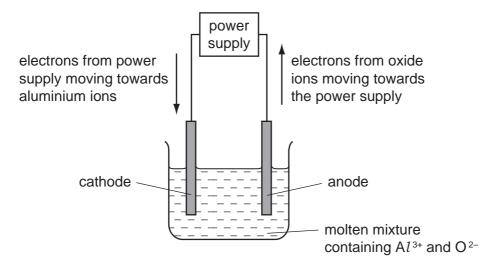


Fig. 8.2

Electrons move through the connecting wires in the directions shown in Fig. 8.2, and ions are converted into uncharged atoms at the surfaces of the electrodes.

(1)	Explain briefly why the mixture containing aluminium oxide must be kept molten.
	[1]
(ii)	Explain briefly why oxygen atoms are formed at the anode and not the cathode.
(iii)	Explain why, when six electrons move around the circuit, two aluminium atoms and three oxygen atoms are formed.
	[3]

				18	Q.
9	(a)	dov	vn the	es of food are treated with gamma radiation. Low dose ripening processes in fresh fruit, whilst higher doses of that make food decay.	
		(i)	Expla boxes	iin why gamma radiation can be used for this, even when the s.	ne fruit is packed in
					[1]
		(ii)	Comp	plete the sentences below by crossing out the incorrect wor	ds in each box.
			leotor	the same numbers of the same numbers of the same numbers.	ber of protons
			isotop	bes of the same element have atoms with different numb	-
			and	the same number of neutrons.	
			anu	different numbers	[1]
	((iii)		0.1 shows how a conveyor belt can be used to move the active source.	fresh fruit past the
			concre	fresh fruit in fresh fruit view from source fresh fruit out	above
				Fig. 9.1	

Suggest why concrete is used to surround the radioactive source.

(b)	Sor	ne people may not like the idea of eating fruit which has been treated with rac	For
	The	ey wrongly think that the food will be radioactive.	TOTAL Mers
	(i)	Describe one way in which a scientist could show that the food is not radioactive	e. 46.Co.
			[1]
	(ii)	Explain why the food will not be radioactive.	L L
			[1]

The Periodic Table of the Elements DATA SHEET

				2	0				Way.	Sand Cannonio
0	4 He Helium	20 Ne on	40 Ar Argon	84 Kry 136	131 Xe Xeon Xenon 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	Cambri
=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	13
>		16 Oxygen	32 Sul fur 16	Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Mendelevium 101	
>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100	
≥		12 Carbon 6	28 Silicon	73 Ge Germanium 32	Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
≡		11 Boron	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81		162 Dy Dysprosium 66	Cf Californium 98	The volume of one mole of any gas is $24\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).
				Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97	ature and
				64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium 96	n temper
<u>.</u>			_	59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	m³ at rooi
5				59 Cobalt 27	Rhodium 45	192 I r Iridium		Sm Samarium 62	Pu Plutonium	as is 24 d
	T Hydrogen			56 Fe Iron	Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	Np Neptunium 93	of any ga
				Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 U Uranium 92	one mole
				52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91	olume of
				51 Vanadium 23	Nobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium 90	The v
				48 T Titanium	2 Zrconium	178 # Hafnium			mic mass abol nic) number	
	-			Scandium 21	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	d series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	
=		Be Beryllium 4	Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	« × ∞	
-		7 Li Lithium	23 Sodium	39 K Potassium	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	58-71 L 90-103	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.