

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

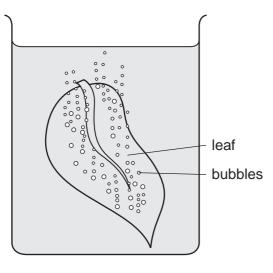
Do not use staples, paper clips, highlighters, glue or correction fluid.

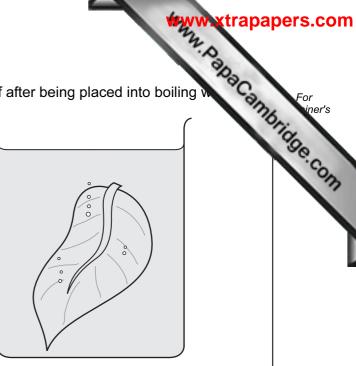
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

iner's Use


This document consists of **18** printed pages and **2** blank pages.



BLANK PAGE

1 Fig. 1.1 shows the upper and lower surfaces of a leaf after being placed into boiling

lower surface

upper surface

Fig. 1.1

(a) (i) Explain why bubbles are produced.

[2]

Fig. 1.2

• Write the letter **C** in the **complete** squares. Count the number of complete squares.

number of complete (**C**) squares = [1]

• Write the letter **P** in any incomplete squares that have an area of half a square or more.

number of incomplete (**P**) squares = [1]

- Ignore the rest of the squares.
- Add C + P to estimate the area of the leaf. You will use your answer in (a)(iii).

leaf area = _____ cm²

- Www.papaCambridge.com 5 (iii) There are approximately 100 stomata per square millimetre on the lower of this leaf. Using the leaf surface area you have determined (a)(ii), calculate the total number of stomata found on the lower surface of the leaf. area of leaf in mm² = total number of stomata = [2] (iv) There are usually fewer stomata found on the upper surface of a leaf. Suggest why this is beneficial to a plant. [2]
- (b) Fig. 1.3 shows an outline cross section of a piece of celery. The celery has been placed into red dye for 4 hours.

On Fig. 1.3, shade the areas to show where you would expect the red dye to be found.

Label the shaded areas with the correct name for this tissue.

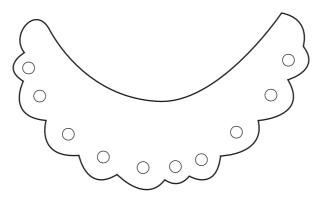


Fig. 1.3

[2]

The science class is investigating the properties of carbon dioxide. They are us 2 apparatus shown in Fig. 2.1 to make and test the gas. They carry out three experiments

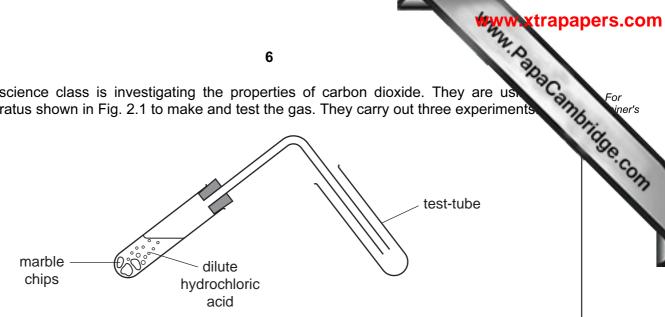


Fig. 2.1

Experiment 1

They place about 3 cm³ of distilled water in a test-tube and add a few drops of Universal Indicator. They then let the carbon dioxide bubble through the water and Universal Indicator. They see a colour change. They decide that a weak acid has been formed in the test-tube.

(a) (i)	The colour changes from to	[2]
(ii)	Name the weak acid in the test-tube.	
		[1]

6

		www.xtrapa
		7 nent 2 ash out the test-tube and half-fill it with limewater. They bubble in carbon dioxide. What does the class observe in the tube at first?
Ехр	erin	nent 2
The	y wa	ash out the test-tube and half-fill it with limewater. They bubble in carbon dioxide.
(b)	(i)	What does the class observe in the tube at first?
		[1]
	(ii)	What does the class observe in the tube after more carbon dioxide has been
	. ,	bubbled in?
		[1]
	The (b)(e teacher gives the class two equations for the reactions they observed in (b)(i) and ii) .
	(/((b)(i) $Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(l)$
		(b)(ii) $CaCO_3(s) + H_2O(l) + CO_2(g) \longrightarrow Ca(HCO_3)_2(aq)$
	iii)	Explain the meaning of the symbols used in the equations.
(,	
		(aq) means
		(g) means
		(s) means [3]
(iv)	Insert one word to complete the following sentence, to explain what happens when carbon dioxide is bubbled into limewater.
		There is aof calcium carbonate which dissolves
		when more carbon dioxide is bubbled in. [1]
Exp	erin	nent 3
-		ss use the apparatus in Fig. 2.1 to collect carbon dioxide in a clean dry test tube. They
		lighted splint into the test-tube of carbon dioxide. The flame is extinguished.
(c)	Cho	pose two correct statements from lines A , B , C and D below.
	Α	Carbon dioxide burns in air.
	В	Carbon dioxide does not support combustion.
	С	Carbon dioxide does not burn in air.
	D	Carbon dioxide supports combustion.
	The	e two correct statements are linesand[1]

BLANK PAGE

rcuit sh 3 A student is finding the resistances of single and parallel wires using the circuit sh Fig. 3.1.

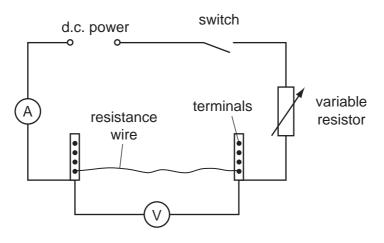


Fig. 3.1

- She connects a 25 cm length of resistance wire between the terminals.
- She closes the switch and notes the readings on the ammeter and voltmeter, and . records them in Table 3.1.
- She opens the switch and then connects a second piece of resistance wire so that • there are 2 identical wires in parallel between the terminals.
- She closes the switch and records the new ammeter and voltmeter readings. .
- She finds the ammeter and voltmeter readings using 3 and 4 wires in parallel, recording . them in Table 3.1 over the page.

- (a) The ammeter and voltmeter readings for 2 wires in parallel are shown in Fig. 3.2
 - (i) Read the ammeter and voltmeter and record the values in Table 3.1.

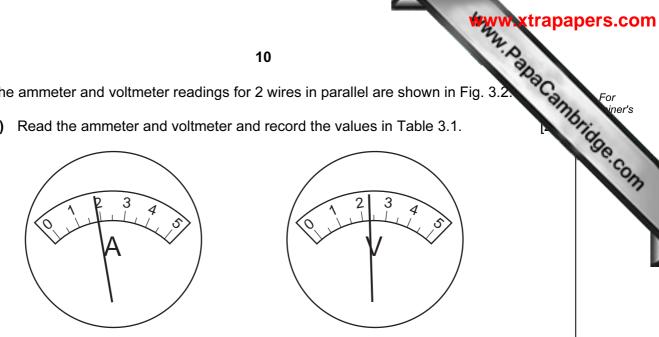


Fig. 3.2

(ii) Calculate the resistances for 2 wires and 3 wires in parallel.

Record them in the last column of Table 3.1.

Use the formula

resistance in ohms = potential difference in volts current in amps

[2]

Table 3.1

number of resistance wires	current/A	potential difference/V	total resistance/ ohms
1	1.0	2.5	2.5
2			
3	2.5	2.0	
4	3.2	1.9	0.6

(b) (i) Plot a graph of total resistance/ohms (vertical axis) against number of wires.

MAN. PapaCambridge.com Draw a smooth curve, extending it so that the resistance of 5 wires in parallel ca be read.

			Π						Τ						Γ											Π				Τ	Π						Τ							
			\square						1						1											Π		П		1			П			Π	+						Π	
																												П																
															T													П																
		-	\vdash	+				+	+	+		H	+	+	+		+	+			+	+			+	H	+	H		+	H	+	+	+	+		+	+	+		-	+		
-	+	+	++	+			+	+	+	+		H	+	+	+		+	+	H		+	+		+	+	++	+	H		+	\vdash	+	+	+	+		+	+	+	H	+	+	+	+
\vdash	-	+	++	+				+	+	+		H	+	+	+		+	+	H		+	+		-	+	++	+			+	++	+	+ +	+	+		+	+	+	+	+	+	+ +	+
	-	+	++	+			-	+	+	+		H	+	+	+		+	+	H		+	+		-	+	++	+			+	++	-	+ +	+	+		+	+	+	+	+	+	+ +	+
\vdash	+	+	++	+		+	+	+	+	+		\vdash	+	+	⊢		+	+	+		+	+		+	+	++	+	+		+	\vdash	+	+	+	+	$\left \right $	+	+	+	\vdash	+	+	+	+
	-	+	\vdash	+		+	+	+	+	+-	H	H	+	+	⊢		+	+	H		+	+-		+	+-	+	+	+ +		+-	\vdash	+	++	+	+		+	+	+-	+	+	+	+ +	+
	-	+	\vdash	+			+	+	+	+		\vdash	+	+	⊢		+	+			+	+		-	+	+	+	+		+	++	-	+	+	+		+	+	+	$\left \right $	+	+	+	+
\vdash	-	-	\vdash	+		+	-	+	+	+		H	+	+	⊢		+	+	+		+	+		-	+	+	+			+	\vdash	-	+	+	-		+	+	+	+	-	+	+	+
	-	-	\vdash	+		+	-	+	+	+		\vdash	+	+	⊢		+	+	\vdash		+	+			+	+	+	+		+	$\left \right $	+	+	+	+	$\left \right $	+	+	+	$\left \right $	+	+	+	-
\vdash	-	+	\square	+	\vdash	\vdash	-	+	+	+	\vdash	\vdash	+	-	1	\vdash	+	+	+	\mid	+	+	+	-	+	\vdash	+	+	\vdash	+	\vdash	+	+	+	+	$\left \right $	+	+	+	+	+	+	+	-
\vdash	-	+	++	+		\vdash	-	+	+	+		\vdash	+	+	+	\vdash	+	+	+		+	+	+	+	+	\vdash	+	+		+	\vdash	+	+	+	+	\vdash	+	+	+	+	+	+	+	+
\square	_	-	\vdash	+		\vdash	_	+	+	+		\vdash	+	+	+	\vdash	+	+	\vdash		+	+	$\left \right $	_	+	\square	+	+		+		+	+	+	+		\rightarrow	_	+	\square	+	+	+	_
		+	\vdash	+				+	+	+		\square	+	+	1		+	+			_	+		_	+	\square	+	\square		+		+	\square	_	+		\rightarrow	_	+	\square	+	+	\square	
			\square												1											\square											\rightarrow							
																										\square		\square									\rightarrow							
			\square																							\square					\square				1		\rightarrow							
LĪ															1																						_							
			П	Т						Т					Г			Т							Τ	П		Π		Т			П				Т		Т					
П			П					Т	Т	Т		Π	Т	Т	Г		Т	Т				Т			Т	П				Т	П		П				Т	Т	Т	П				Т
																										\square																		
										T					\square																													
		-	\vdash	+					+	+		\square	+	+	\vdash		+	+							+	H		Н		+		+	\square	+			+	+	+	H	+	+		
		-	\vdash						+	+			+	+	\square		+	+							+	H		Н		+		+			-		+	+	+	\square				
		+	++	+					+	+		H	+	+	+		+	+			+	+			+		+	H		+		+		+	+		+	+	+	\square	+	+		
H	+	+	++	+			+	+	+	+		H	+	+	+		+	+			+	+		+	+	H	+	H		+	H	+	H	+	+	H	+	+	+	H	+	+	+	+
	-	+	++	+			-	+	+	+		H	+	+	+		+	+			+	+		-	+	+	+	H		+	+	+	+	+	+		+	+	+	\vdash	+	+		+
	-+-	+	++	+		+	-	+	+	+		\vdash	+	+	⊢		+	+	+		+	+		-	+	+	-			+	++	-		+	+		+	+	+	+	-	+	+ +	+
\vdash	+	+	++	+		+	+	+	+	+		+	+	+	+	\vdash	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
\vdash	-	+	++	+		+	+	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+	+	$\left \right $	+	+	+	+	+	+	+	+
+	-	+	++	+	+	\vdash	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+	\vdash	+	+	+	+	+	\vdash	+	+	\vdash	+	\vdash	+	+	+	+	\vdash	+	+	+	+	+	+	+	+
+	+	+	++	+	\vdash	\vdash	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+	\vdash	+	+	+	+	+	+	+	+	\vdash	+	\vdash	+	+	+	+	\vdash	+	+	+	+	+	+	+	+
+	-	+	\vdash	+	\vdash	\vdash	-	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+	\vdash	+	+	+	+	+	\vdash	+	+		+	\vdash	+	+	+	+	$\left \right $	+	+	+	+	+	+	+	+
\vdash	+	+	++	+	-	\vdash	+	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+		+	+	+	+	+	\vdash	+	+	\vdash	+	\vdash	-	+	+	+	$\left \right $	+	+	+	+	+	+	+	+
\vdash	-	+	\vdash	+		\vdash	-	+	+	+		\vdash	+	+	+	\vdash	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+	+	$\left \right $	+	+	+	+	+	+	+	+
\vdash	-	+	\vdash	+	\vdash	\vdash	-	+	+	+	\vdash	\vdash	+	+	+	\vdash	+	+	+		+	+	+	+	+	\vdash	+	+		+-	\vdash	+	+	+	+-	\vdash	+	+	+	+	+	+	+	+
$\left \right $	-	-	\vdash	+		\vdash	-	+	+	+		\vdash	+	+	+	\vdash	+	+	+		+	+	+	_	+	\square	+	+		+	$\left \right $	+	$\left \right $	+	+		+	+	+	$\left \right $	+	+	+	_
\square	-	-	\vdash	+		\vdash	_	+	+	+		\vdash	+	+	+	\vdash	+	+	\vdash		+	+	+	_	+	\square	+	+		+	$\left \right $	+	$\left \right $	+	+		+	+	+	$\left \right $	+	+	+	_
\square	-		\square	+	-	\square		+	-	+		\square	+	+	1	\square	+	+	\vdash		-	+	1	-	-	\square	+	+		+	\square	+	\square	-	+		-	-	+	\square	+	+		+
			\vdash							1		\square	_				_	+								\square		\square		-	\square	+					4	_	+	\square				
			\square										_								_					\square		\square			\square	\perp		_	-		\rightarrow		+					
			\square																																		\perp							
ιĪ			LĹ									LĪ			1																		LĪ			LĪ	_[LĪ			LĪ	
LT			LT													LT										LT					LT		LT											
																										Π																		
									1						1																													

[3]

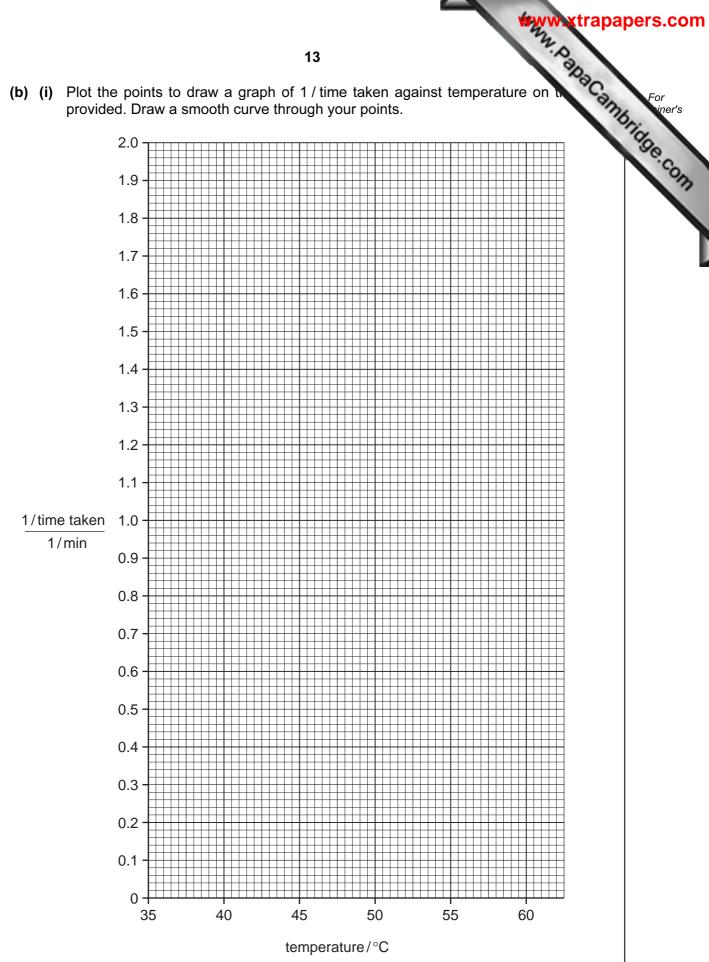
(ii) Use your graph to find the resistance of 5 wires in parallel. Show how you do this on the graph.

> resistance of 5 wires in parallel = _____ ohms [2]

(c) The student is not satisfied that the resistance she calculated for 1 wire is accurate. Suggest how she can find a more reliable value using the same apparatus.

..... [1]

(a) A student carried out an experiment to investigate the effect of change of temp 4 on the activity of the enzyme pepsin.


Www.papaCambridge.com Pepsin breaks down protein in the stomach. Its activity can be measured by timing how long it takes to break down a cloudy protein solution. The solution becomes clear.

- The student put 5.0 cm³ of the protein solution into a test-tube and added 1.0 cm³ hydrochloric acid.
- He put 1 cm³ of pepsin solution into another test-tube.
- He put both test-tubes into a water bath set at 35 °C until they both reached this temperature.
- He then poured the pepsin solution into the protein solution and timed how long it took for the mixture to go clear. He recorded his results in Table 4.1.
- The student repeated this procedure for each temperature.

temperature/°C	time taken for mixture to go clear/min	$\frac{1}{\text{time taken}} / \frac{1}{\text{min}}$
35	6.8	0.15
40	2.9	0.34
45	1.3	
50	0.5	2.00
55	2.0	
60	7.2	0.14

Table 4.1

Find the reciprocal of the time taken (1 / time taken) for the temperatures 45 °C and 55 °C . This is a measure of the rate of reaction. Enter your results in Table 4.1.

[2]

		14 Use the graph to estimate the optimum temperature for the activity of pepsin °C Explain why you cannot be sure that this is an accurate optimum temperature.	pers.con
		14	
	(ii)	Use the graph to estimate the optimum temperature for the activity of pepsin	For
		°C	high
	(iii)	Explain why you cannot be sure that this is an accurate optimum temperature.	Se.Co.
		[1]	12
(c)	Use	your knowledge of enzyme action to explain the results	
(0)	(i)	between 35 - 45 °C,	
	(-)		
		[1]	
	(ii)	between 55 - 60 °C.	
	()		
		[1]	
(d)		e student suggested that there should be another two tubes set up for each perature.	
	tub 5.0	e 1 cm ³ of the protein solution + 1 cm ³ water + 1 cm ³ pepsin solution	
	tub 5.0	e 2 cm ³ of the protein solution + 1 cm ³ hydrochloric acid + 1 cm ³ water	
	Exp	plain the purposes of tube 1 and tube 2 .	
	tube	e 1	
	tube	e 2	
		[2]	

5 A student is investigating the dyes contained in three inks, 1, 2 and 3.

www.papaCambridge.com He has put spots of the inks on the start line that he has marked on a piece chromatography paper. He has formed the paper into a tall cylinder. His arrangement is shown in Fig. 5.1.

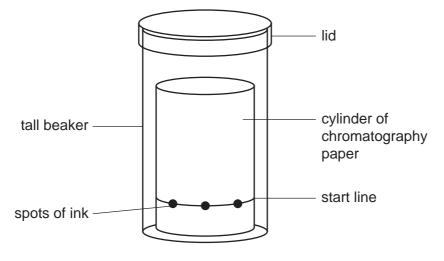


Fig. 5.1

The student is now ready to pour some liquid into the tall beaker to separate the dyes in the inks.

(a) (i) Name a liquid that he can use to separate the dyes in the inks.

[1] (ii) On Fig. 5.1, draw a line to show how much of this liquid the student must place in the beaker. [1] (iii) Explain why a lid must be placed on the beaker.[1]

(iv) Suggest the length of time that should be allowed for the dyes to separate.

.....mins [1]

www.xtrapaj	pers.com
16 × 2 × 0	
So the second seco	
5.2 shows the results of the experiment.	For iner's
ink ink ink 1 2 3	idge.com
Fig. 5.2	
Suggest one conclusion that can be made by comparing the spots obtained from each of	
[1]	
(ii) ink 2 and ink 3.	
[1]	
The student thinks that one of the three dyes contained in ink 2 may act as an acid-base indicator.	
Describe how he can find out which of the three dyes will act as an indicator.	
Name two reagents that he can use in this experiment.	
reagent 1	
reagent 2	
[4]	
	16 5.2 shows the results of the experiment. ink ink ink ink

6 The bending of light when it travels from air into a liquid, or from a liquid into the known as refraction.

WANN, Papacambridge.com A student is trying to compare the refraction of light by salty water and by fresh water. He has placed a coin at the bottom of an empty bucket. A ruler is placed vertically a short distance from the bucket.

The student notes the position of his eye next to the ruler when he can just see the coin above the rim of the empty bucket. This is shown in Fig. 6.1.

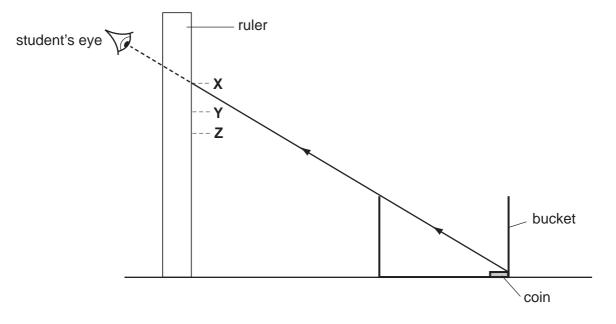


Fig. 6.1

- He records the position of his eye, point **X**, in Table 6.1.
- He fills the bucket with fresh water.
- He finds and records the new position of his eye when he can just see the coin, point Y.
- He empties the bucket and refills it with salty water.
- He finds and records point **Z** when he can just see the coin.

wxtrapapers.com

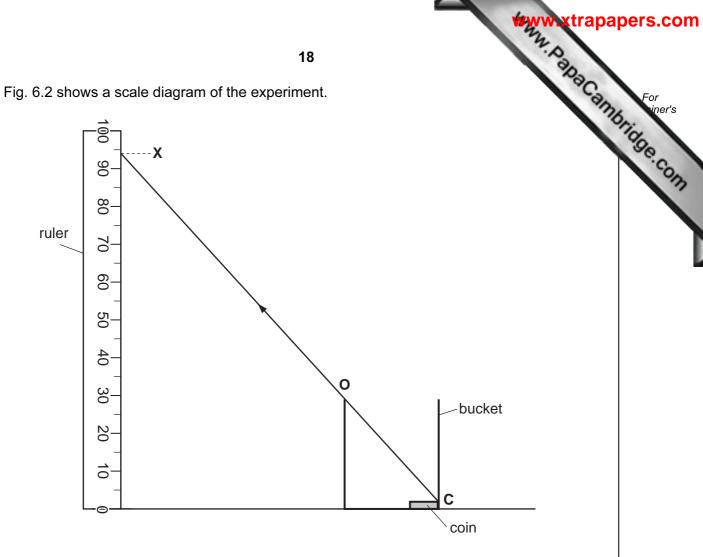


Fig. 6.2

The line **XC** shows a ray of light travelling from the coin to the student's eye. Point **O** is on this ray, just above the rim of the bucket.

(a) On the ruler in Fig. 6.2, mark and label the points Y and Z. Use the data from Table 6.1.

Та	b	e	6.	1
Та	b	е	6.	1

contents of the bucket	point	position on ruler/cm
air	х	94
fresh water	Y	58
salty water	Z	51

(b) On Fig. 6.2, draw the straight lines **YO** and **ZO**. See Fig. 6.1.

[1]

		www.xtrapa	pers.com
		20	
(e)	(i)	A bird is trying to catch a fish that is swimming below the surface of a fresh river. The bird and the fish are shown in Fig. 6.3.	For viner's
		20 A bird is trying to catch a fish that is swimming below the surface of a fresh river. The bird and the fish are shown in Fig. 6.3.	idge.com
		Fig. 6.3	
		Should the bird aim his beak above or below the position at which he sees the fish?	
		Explain your answer.	
		[1]	
	(ii)	How should the aim of the bird change if the fish is swimming in salty seawater instead of fresh water?	
		Explain your answer.	
		[1]	

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.