

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Stage Com

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

COMBINED SCIENCE

0653/22

Paper 2 (Core)

May/June 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 18 printed pages and 2 blank pages.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

The chemical formulae of some metal compounds found in ores, together with the names of the ores, are shown below.

argentite	Ag_2S
chromite	FeCr ₂ O ₄

galena PbS

scheelite CaWO₄

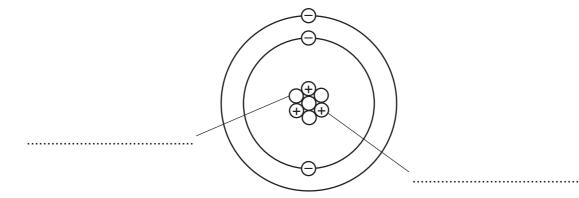
(i) A binary compound is one that contains only two different elements.

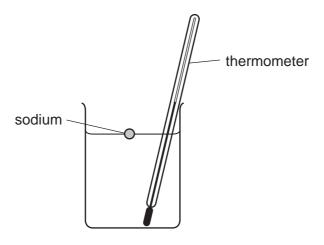
State which of the compounds in the list above are binary compounds.

[1]

(ii) State the ore from which the metallic element tungsten could be extracted.

(b) Fig. 1.1 shows a diagram of an atom of the element lithium. This atom has a nucleon number (mass number) of seven.



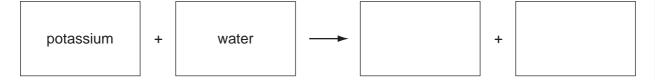

Fig. 1.1

Complete Fig. 1.1 by labelling the particles that exist in the nucleus.

[2]

(c) (i) A teacher dropped a small piece of sodium into a beaker containing cold wa a thermometer. She stirred the mixture until all of the sodium had reacted.

Predict **two** observations that could be made as the sodium reacts with the water.


1	
2	
 2	

(ii) Potassium is another element in the same group of the Periodic Table as sodium.

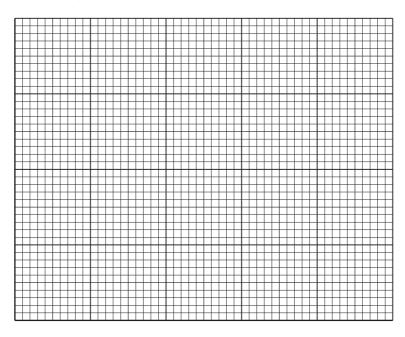
State one way in which the reaction of potassium with cold water would be different from that of sodium.

[1]

(iii) Complete the word chemical equation for the reaction between potassium and water.

[2]

[4]


2 An athlete warms up by running along a race track.

(a) He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s.

He continues at this speed for another 10 seconds.

During the next 5 seconds, he steadily slows down and stops.

Draw a speed-time graph to show the motion of the athlete.

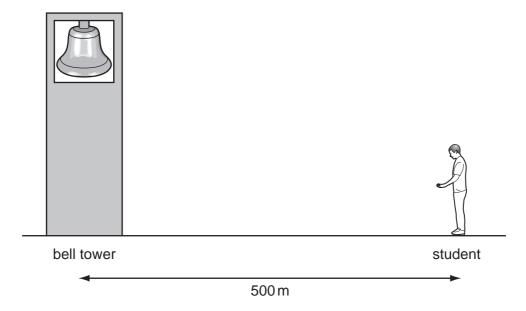
(i) Explain how evaporation cools down the athlete.

[2]

(ii) State two factors which would increase the rate of evaporation.

[2]

(a)	Define the term resp	iration.	188						
(b)	(b) Table 3.1 shows the percentages of three gases in inspired air and in expired air.								
	Write the name of ea	ach gas in Table 3.1.							
		Table 3.1							
	gas	percentage in inspired air	percentage in expired air						
		21	17						
		0.04	4						
		78	78						


..... (d) When adrenaline is secreted, oxygen is transported more quickly to the muscles. (i) How does adrenaline have this effect? [1] (ii) State one situation in which adrenaline secretion increases. [1] (iii) Name the body organ that destroys adrenaline after it has been secreted.

(a) Radio waves are electromagnetic waves. Sound waves are not. State one other way in which radio waves differ from sound waves. (b) Fig. 4.1 shows two lists. The first is a list of different types of electromagnetic wave. The second is a list of some of their uses. Draw lines to connect each type of radiation to its use. [3] radiation use examining bones and teeth gamma microwave remote controls for television sets infra-red satellite communications X-rays sterilising surgical instruments

Fig. 4.1

(c) A student carried out an experiment to find the speed of sound in air by watching and listening to a bell being rung.

He stood 500 m from the bell.

	WELL WAS	ctrap
	7 e sound took 1.5 s to travel from the bell to the student. Calculate the speed of sound. State the formula that you use and show your working. formula used	
The	e sound took 1.5s to travel from the bell to the student.	aCa)
(i)	Calculate the speed of sound.	
	State the formula that you use and show your working.	·
	formula used	
	working	
	on an	
	m/s	[2]
(ii)	The sound wave produced by the bell had a frequency of 400 Hz.	
	State the approximate frequency range which humans can hear.	
	Hz to Hz	[1]
(iii)	The mass of the bell is 10 000 kg and it has a volume of 1.1 m ³ .	
	Calculate the density of the bell.	
	State the formula that you use and show your working.	
	formula used	
	working	
	working	

..... kg/m³

[2]

				www.xtra	apapers.cor
		8	3	1. Day	
Wa drir		impure and have to	be purified to make th	nem safe for hun	Apapers.cor
(a)	State one process th	nat is used to make wa	ater safe for humans to	o drink.	Tage
	Explain, for the proc	ess you have chosen,	how this process puri	fies the water.	COM
	process				
	how it purifies				
				[2	2]
(b)	Water is a compoun-	d which contains the e	elements hydrogen and	d oxygen.	
		ence, other than physionents hydrogen and o		e compound water an	ıd
		, -			
					 21
					-,
(c)		ormation about water	and two compounds	that can form mixture	es
	with water.	Table 5	.1		
	compound	melting point/°C	boiling point/°C	solubility in water	
-	water	0	100	-	
	sodium chloride	801	1413	soluble	

(i)	Describe briefly solution of sodiu	m chloride.					
			 	 	 		•
			 	 	 	.1	 21

69

insoluble

-95

hexane

	(ii)	Use the information in Table 5.1 to predict and explain whether or not a mix hexane and water could be separated at room temperature (20 °C) by the me of filtration.
		[2]
(d)	A st	tudent burned a small piece of magnesium, using the apparatus shown in Fig. 5.1.
		magnesium burning water Fig. 5.1 en the reaction finished, the magnesium oxide was mixed with the water in the com of the gas jar.
	(i)	Magnesium oxide is made of positive ions and negative ions.
		Describe briefly what happens to an atom when it is converted into a negative ion.
		[1]
	(ii)	The student added a few drops of full range indicator solution (Universal Indicator) to the mixture of water and magnesium oxide.
		The indicator changed from green to blue.
		Explain why this happens.

6

/:		Ctoto	4	-ttt-	412-4	f		h a		a b : a	
(I)	Siale	two	effects	เทลเ	iorces	can	nave	on an	obje	Cl.

1	
_	

[2]

(ii) State the unit used to measure force. [1]

(b) Fig. 6.1 shows a car travelling in a straight line. The car is decelerating (slowing down).

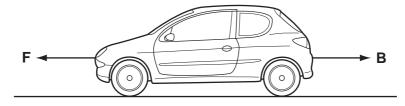


Fig. 6.1

The total forward force on the car is **F** and the total backward force is **B**.

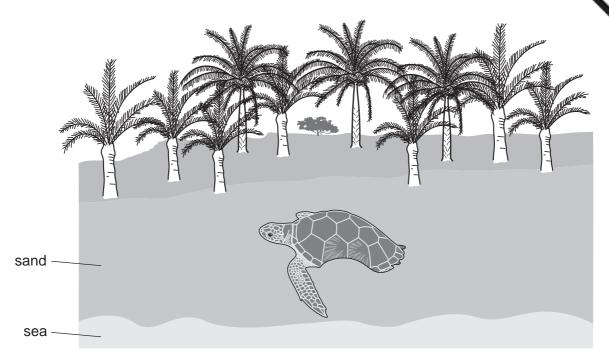
Which force is greater, **F** or **B**?

Explain your answer.

			[1]

chemical

cooled


(c) Using some of the words below, complete the sentences to explain the energy of which take place in a car when petrol (gasoline) is used to power the car.

burned

boiled

WWW. Papa Cambridge.com kinetic heat nuclear sound Petrol (gasoline) contains energy. The petrol is in the engine to produce heat energy. The heat energy is changed into _____ energy which moves the car. This process is not very efficient and much energy is wasted as energy and _____energy. [5] (d) Petrol (gasoline) is a mixture of hydrocarbons. Explain why the mixture of waste gases (exhaust gases) from a car contains carbon dioxide and water vapour.

7 Hawksbill turtles are an endangered species. They lay their eggs in nests in the salbeach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.
- (a) Researchers measured the temperature, at a depth of 30 cm, in two different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 7.1. The tops of the bars represent the mean temperature.

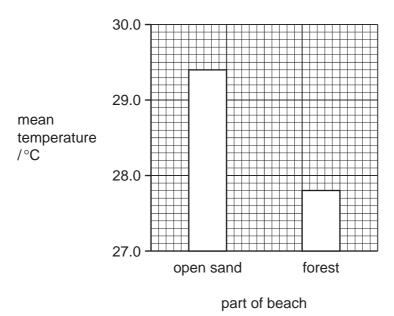


Fig. 7.1

	With reference to Fig. 7.1, describe the effect of the forest on the temperature of the							
				[2]				
(b)	The researchers	s counted the proportion	of male and female turtl	es hatching from nests				
` ,			he results are shown in 1					
ı	part of beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males				
	open sand	0	16	0				
	in forest	36	0	0				
				[2]				
(c)	Suggest why had cut down.	awksbill turtles might be	come extinct if all the fo	rest by the beaches is				
				[0]				
(d)	State two harms result from deform		ment, other than extincti	on of species, that can				
	1							
	2							

8 Fig. 8.1 shows apparatus a student used to investigate temperature changes that odduring chemical reactions.

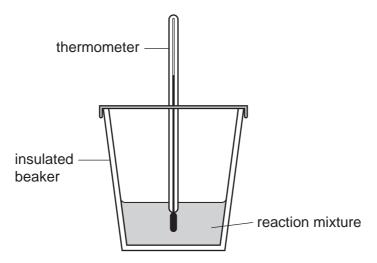


Fig. 8.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 8.1 contains the results the student obtained.

Table 8.1

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

(a)	(1)	acid and an alkali.							
		experiment		i i					
		explanation							
									[1]

		20.	
	(ii)	State and explain which experiment, 1 , 2 , 3 or 4 , was an endothermic reaction experiment explanation	For siner's
		experiment	Aid S
		explanation	ac.co.
		[1]	13
	(iii)	Suggest why the temperature did not change when copper was added to magnesium sulfate solution.	
		[1]	_
(b)		e student used the apparatus in Fig. 8.1 to carry out two further experiments, 5 and o investigate the exothermic reaction between zinc and copper sulfate solution.	
		experiment 5 the student used zinc powder and in experiment 6 she used a single ce of zinc.	
	The	e mass of zinc in both experiments was the same.	
	•	ggest and explain briefly in which experiment, 5 or 6 , the temperature increased re quickly.	
	exp	periment	
	exp	planation	
		[2]	

(a) Exp	plain what is meant by the term <i>enzyme</i> .
•••••	L
(b) Fig	. 9.1 shows the effect of pH on the activity of an enzyme.
	↑
	ate of paction packed at the state of the st
	0
	1 2 3 4 5 6 7 8 9 10 11 12
	рН
	Fig. 9.1
De	scribe the effect of pH on the activity of this enzyme.
	······································
	enzyme works in the human stomach, where hydrochloric acid is secreted. The
	zyme is adapted to work best in these conditions.
(i)	On Fig. 9.1, sketch a curve to show how pH affects the activity of this stomacenzyme.
(ii)	After the food has been in the stomach for a while, it passes into the duodenur Pancreatic juice, which contains sodium hydrogencarbonate, is mixed with the food in the duodenum.
	Explain why the stomach enzyme stops working when it enters the duodenum.

(d)	Enzymes in the human digestive system help to break down large food molecules.	For iner's
	Explain why this is important.	Tage
		John
		 [2]
		I

BLANK PAGE

Www.xtrapapers.com

BLANK PAGE

Www.xtrapapers.com

Ē	the Elements
빌	of t
DATA SHEET	Table
Δ	Periodic
	The

								-	1	WWW.	xtrapapers.com
					2	0		1			Papa
	0	Heirum	20 Ne on 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		Lutetium 771	Lr Lawrencium 103	AdhaCambhidge.com
	=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	Se COM
	>		16 Oxygen	32 S Suffur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101	
	>		14 Nitrogen 7	31 Phosphorus 15	AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		Erbum 68 Fm Fm Fm 100		
	>		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium 49	204 T (Thallium		162 Dy Dysprosium 66	Cf Californium 98	pressure
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkeiium 97	ature and
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96	n tempera
Group					Nickel Nickel 28	106 Pd Palladium 46	195 Pt Patinum 78		152 Eu Europium 63	Am Americium 95	n³ at roon
Gre					59 Co Cobalt 27	103 Rh Rhodium 45	192 r r		Samarium 62	Pu Plutonium 94	is is 24 dr
		T Hydrogen			56 Fe Iron	Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	Neptunium	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92	one mole
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91	olume of
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th Thorium	The v
					48 Ti Titanium 22	91 Zr Zirconium 40	178 # Hafnium 72			nic mass bol nic) number	
					45 Sc Scandium 21	89 × Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium †	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Be Beryllium	Magnesium	40 Ca	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	« × □	
	_		7 Li Lithium 3	23 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L ₆	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.