

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of **19** printed pages and **1** blank page.

1 (a) Most atoms of metallic elements found in the Earth's crust exist in compounds ores which are contained in rocks.

Www.PapaCambridge.com The chemical formulae of some metal compounds found in ores together with the names of the ores are shown below.

argentite	Ag_2S
chromite	FeCr ₂ O ₄
galena	PbS
scheelite	CaWO ₄

(i) A binary compound is one that contains only two different elements.

State which of the compounds in the list above are binary compounds.

......[1]

- (ii) State the ore from which the metallic element tungsten could be extracted.
 -[1]
- (b) Fig. 1.1 shows an incomplete diagram of an atom of an element Q in which only the outer shell electrons are shown.

Fig. 1.1

(i) Name element **Q** and explain your answer.

name	
explanation	
	[2]
	[ວ]

(ii) Element Q combines with hydrogen to form covalent molecules which ha formula QH₄.

www.papacambridge.com Complete the bonding diagram below to show how the bonding electrons are arranged.

- [2]
- (iii) Element **Q** may be extracted from its oxide, QO₂, in a reaction with carbon, C.

In this reaction, the compound carbon monoxide, CO, is formed in addition to the free element Q.

Suggest a balanced symbol equation for this reaction.

[2]

- 2 An athlete warms up by running along a race track.
- d of 7 m/s. (a) He accelerates from rest and after 10 seconds reaches a maximum speed of 7 m/s. He continues at this speed for another 10 seconds.

4

During the next 5 seconds, he steadily slows down and stops.

Draw a speed-time graph to show the motion of the athlete.

(b) He then competes in a 200 m running race.

(i) He completes the race in 25 seconds.

Calculate his average speed.

State the formula that you use and show your working.

formula used

working

[2]

[3]

		www.xtrapap	ers.c
		5	
	(ii)	The mass of the athlete is 70 kg.	For
		Calculate the kinetic energy of the athlete when he is travelling at 6 m/s.	iner
		State the formula that you use and show your working.	.0°.C
		formula used	
		working	
(-)	D		
(C)	Dur	ring a race the athlete cools down by sweating.	
	(i)	Describe and explain, in terms of the movement of water molecules, how evaporation cools down the athlete.	
		[3]	
	(ii)	State two factors which would increase the rate of evaporation	
	(יי)	and [1]	

		6	apapers.com
3	(a)	Define the term <i>respiration</i> .	For iner's
			dge con
			2]
	(b)	State the balanced symbolic equation for aerobic respiration.	21
	(c)	Outline how oxygen is transported to a respiring cell in a muscle.	-1
		[2]

(d)	8 Describe how to find the density of a small irregular object such as a tooth.	For iner's
		Secon
		N/
	[3]	

www.papacambridge.com 5 Water supplies are often impure and have to be purified to make them safe for hundred drink.

(a) State one way that harmful bacteria may be removed from water during purification.

(b) Water is a compound which contains the elements hydrogen and oxygen.

Describe one difference, other than physical state, between the compound water and a mixture of the elements hydrogen and oxygen.

[2]

(c) Table 5.1 shows information about water and three compounds that can form mixtures with water.

Table	5.1
-------	-----

compound	melting point/°C	boiling point/°C	solubility in water
water	0	100	-
sodium chloride	801	1413	soluble
silicon dioxide	1650	2230	insoluble
hexane	-95	69	insoluble

(i) State which compound in Table 5.1 could be separated from a mixture with water by filtration.

......[1]

(ii) Explain why the other two compounds **cannot** be separated from a mixture with water by filtration.

..... [2]

9

ompould only the For iner's out this task. (d) (i) A student was asked to use the reaction between the insoluble compound carbonate and dilute sulfuric acid to make a solution that contained only the zinc sulfate.

Describe the main steps of a method the student should use to carry out this task.

You may draw labelled diagrams if it helps you to answer this question.

..... [3]

(ii) Suggest the word chemical equation for the reaction between zinc carbonate and dilute sulfuric acid.

[2]

Draw a circuit diagram including a battery to show how this works.

Design your circuit so that, if one brake light fails, the other still lights up.

[4]

7 Hawksbill turtles are an endangered species. Adults spend most of their lives at s the females come ashore to lay their eggs. They bury their eggs in nests in the sand, e on a beach or in the vegetation that grows just behind the beach.

The sex of hawksbill turtles is determined by the temperature of the sand in which the eggs develop.

- At 29 °C, equal numbers of males and females develop.
- Higher temperatures produce more females.
- Lower temperatures produce more males.

There is concern that in recent years too many female turtles have been produced, and not enough males.

(a) Researchers measured the temperature, at a depth of 30 cm, in four different parts of a beach, on Antigua, where hawksbill turtles lay their eggs. The results are shown in Fig. 7.1. The tops of the bars represent the mean temperature.

Fig. 7.1

13		
With reference to Fig. 7.1, describe the effect of the presence of trees on the temp of the sand.	Cambri	For iner's
		e.com
	[-]	

rapapers.com

(b) The researchers counted the proportion of male and female turtles hatching from nests in the four different parts of the beach. The results are shown in Table 7.1.

part of beach	nests producing more males than females	nests producing more females than males	nests producing equal numbers of females and males
open sand	0	16	0
low vegetation	31	24	6
edge of forest	61	0	11
in forest	36	0	0

Table 7.1

(i) State the part of the beach in which most female hawksbill turtles chose to lay their eggs.

......[1]

(ii) Use the information in Fig. 7.1 to explain the results for nests in open sand and in forest, shown in Table 7.1.

[2]

(c) Tourism is an important industry in Antigua. The vegetation on many beaches has been cut down to make the beaches more attractive to tourists.

With reference to the results of this research, suggest how deforestation of beaches could affect hawksbill turtle populations.

[2]

	www.xtrapa	pers.com
	14	
(d)	Describe two harmful effects to the environment, other than extinction of species may result from deforestation.	For iner's
	1	ase com
	2	
	2	
	[4]	

BLANK PAGE

Please turn over for Question 8.

that ot For iner's 8 Fig. 8.1 shows apparatus a student used to investigate temperature changes that on during chemical reactions.

16

Fig. 8.1

The student added reactants to the insulated beaker and stirred the mixture. She recorded the final temperature of each mixture.

At the start of each experiment, the temperature of the reactants was 22 °C.

Table 8.1 contains the results the student obtained.

Τa	able 8.1	

experiment	reactant A	reactant B	final temperature/°C
1	dilute hydrochloric acid	sodium hydrogencarbonate	16
2	dilute hydrochloric acid	potassium hydroxide solution	26
3	magnesium	copper sulfate solution	43
4	copper	magnesium sulfate solution	22

(a) Explain which experiment, 1, 2, 3 or 4, was a neutralisation reaction between an acid and an alkali.

experiment

explanation[1]

	17	apapers.com
(b)	State and explain which experiment, 1, 2, 3 or 4, was an endothermic reaction.	For
	experiment	nonide mers
	explanation	
(c)	Apart from the change in temperature, state one other observation the student course make when she carried out experiment 3 .	ıld
(d)	Explain, in terms of reactivity, why a reaction occurred in experiment 3 .	
		 [1]
(e)	Suggest and explain a reason for the result obtained in experiment 4 .	

					2	20				WWW	xtrapapers.co	
	0	4 Helium 2	20 Neon 10	40 Arg on 18	84 Krypton 36	131 Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	aCannbri	
	١١		Fluorine 19	35.5 C1 Chlorine	80 Br Bromine 35	127 lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	age.co	
	N	_		16 Oxygen 8	32 Sultur 16	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium 69	Mendelevium 101	
	>			14 Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fermium 100	
	\geq		12 Carbon G	28 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead		165 HO Holmium 67	Einsteinium 99	(r.t.p.).	
	≡		5. Boron 1	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium 49	204 T 1 Thallium 81		162 Dysprosium 66	Cf Californium 98	pressure	
					65 Zn ^{Zinc}	112 Cadmium 48	201 Hg ^{Mercury} 80		159 Tb ^{Terbium} 65	BK Berkeiium 97	ature and	
e Eleme					64 Cu ^{Copper}	108 Ag Siver	197 Au Gold 79		157 Gd Gadolinium 64	Curium Octium	n tempera	
	-				59 Nickel 28	106 Pd Palladium	195 Pt Platinum 78		152 Eu 63	Americium 95	n³ at roon	
					59 Co ^{Cobalt}	103 Rhodium 45	192 r 1riđium 77		150 Samarium 62	Putonium 94	ıs is 24 dr	
a a		⁺ Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	of any ga	
					55 Mn ^{Manganese} 25	Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92	one mole	
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Fraseodymium 59	Pa Protactinium 91	olume of c	
					51 Vanadium 23	93 Ni obium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Thorium 90	The v	
					48 Ti Ttanium 22	91 Zr Zirconium 40	178 Hf Hathium 72			nic mass bol 1ic) number		
					45 SC Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	series eries	 relative aton atomic symt proton (atom 		
	=		9 Beryllium	24 Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba ^{Barium} 56	226 Rad 88	anthanoid Actinoid se	a X a b		
	_		7 Lithium	23 Sodium	39 Potassium 9	85 Rb Rubidium	133 CS Caesium 5	Francium 7	58-71 Lé 90-103 /	ه ه		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of