CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Www.strapapers.com MARK SCHEME for the October/November 2012 series

0653 COMBINED SCIENCE

0653/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme Syllabus	
	IGCSE – October/November 2012 0653	1020
(a) hae	emoglobin ;	andr
(b) (i)	absorb, water/mineral ions/correct named ion ;	WWW xtrapape
(ii)	large surface area ; idea that more water/ions can be absorbed (at the same time) ;	[2]
(c) (i)	inner parts of at least one oval shaded ;	[1]
(ii)	С, В, А ;	[1]
(iii)	transpiration/evapotranspiration; as water vapour/reference to evaporation; through the stomata; by diffusion;	[max 3]
		[Total: 9]
		[1014110]
(a) 118 7;	3;	[2]
(b) (i)	accept yellow through orange ;	
	and brown through black (solid) ; (reaction occurs because) chlorine displaces/oxidises the other halide/halogen ;	
	because chlorine is more reactive/reactivity decreases down the gro	up ; [3]
(ii)	(no) most vigorous would be between most reactive halogen and most re alkali metal ;	active
	most reactive alkali metal is rubidium/reactivity increases down Groustudent should use rubidium (with fluorine);	up 1 ; [max 2]
(c) 2K	+ Br₂ 2KBr ; ;	
	nark for KBr, 1 mark for Br _{2,} 1 for balanced] not allow balance mark for K + Br ——— KBr)	[3]
		[Total: 10]

Page	3		Mark Scheme		Syllabus	Y
		IGCSE -	- October/November	2012	0653	
(a) (i			ogether in liquid/corre smit energy more quid		Syllabus 0653 to density ;	ambrid
(ii		ater amplitude ; ne frequency ;				[2]
(iii) 10 t	o 20(Hz) to 200	00 to 25 000 (Hz) ;			[1]
(iv	•	nd waves – longi er waves – trans				[1]
(b) (i		e =) distance/spe 0012 s ;	eed ;			[2]
(ii		ed = frequency × 30/2200 = 0.15 m	wavelength or wavelength	ength = speed	d/frequency ;	[2]
					[Ti	otal: 10]
(a) (i		organisms and t racting together	heir environment ;			[2]
(ii) ene	rgy (flow) ;				[1]
(iii) sec	ondary consume	r/third trophic level;			[1]
(iv			n trophic levels/from o o support more than fi	•	to another ;	[2]
pi bi pi	ollinatio ees ca ollen c	rry pollen from ai ontains male gar	nther/to stigma/to a a	•		
		ormed ;	Tonowing pointation, ,			[max 3]
					[Total: 9]

Pa	ge 4		Syllabus
		IGCSE – October/November 2012	0653 23
(a)	bec OR goe	es cloudy ; cause solid/precipitate/calcium carbonate produced ; t es cloudy and then clears ; cause precipitate/calcium carbonate forms and re-disso	Syllabus 0653 olves ; [max 2
(b)	(i)	D ;	[
	(ii)	increasing temperature increases rate/ORA ; decreasing concentration/higher ratio water:acid decr	eases rate/ORA ; [2
	(iii)	increasing temperature causes increase in particle spe increases frequency of collisions between acid particle increases energy of collisions between acid particles a	es and tablet ;
(a)	(i)	R = V/I ; = $2/0.2 = 10 \Omega$ and = $4/0.31 = 12.9 \Omega$;	[.
	(ii)	current not (directly) proportional/current does not inc increase decreases/begins to level off ;	rease as much/rate of [
(b)	(i)	angle of incidence labelled and angle of reflection labe	elled ; [
	(ii)	45° ;	[

Pa	ige 5	5		Mar	rk Scher	me			Sylla	abus	Q.	N.
	.		IGCS	E – Octo	ober/Nov	vember	2012			53	N X	20
(a)	Е;											an.
(~)	C ;											101
(b)	(i)	-	ds produc	ed ;								da Cambri
-		acids lov	•									[2
	(ii)	tube B w	<i>v</i> as at a h	igher ten	nperatur	e;						
	• -	the react	tion took	place fas	ster;		(' \		/	11:- : -	_	
			e to great cy betwee					ticles	/greate	r collisio	วท	[(
			·)				,					
(c)	hea	rt disease	э:									
\ ⁻ <i>J</i>		erence to		erosis/b	uild-up c	of plaque	s/choles	sterol	in arter	es ;		
	refe	erence to	obesity ;									
		esity lead	•	iter risk o	of diabet	es/hear	t disease	/high	blood	oressur	е;	[max 2
												[Total: §
												L
(a)	(i)	methane):									
1° 1	()		e + oxyge	n ; ——	 carbor 	n dioxide	e + water	; (LH	S,RHS			[
	(ii)	fuels cor	nbusted r	eference	e to com	bustion/	oxidatior	. ·				
	()	sulfur die	oxide pro	duced ;								
			lissolves i ater gathe						anorate	from la	akes ·	[4
			ater gatite	73 II IIVC		anes/au	10 0003 1		aporate		1103,	Ľ
(b)	(i)											
(U)	(i)											
		\frown		\mathbf{r}	$\overline{}$							
					\							
	$\left(\right)$	н	S		н)							

two shared pairs ; lone pairs on sulfur ; (max 1 if symbols missing or incorrect or if extraneous electrons present) [2]

[Total: 9]

Page 6	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0653 23
(a) (KE =) $\frac{1}{2}$ = $\frac{1}{2} \times 0$.	2 mv ² ; 5 × 0.5 × 0.5 = 0.0625 J ;	Syllabus 0653 Syllabus 0653 Syllabus Sy
electrons	etween materials ; s are lost from car/gained by plastic surface ; eference to imbalance of positive and negative charg	
Conectin	elerence to imparance of positive and negative charg	
(c) (i) D to	Ε;	[1]
	C (no mark) m/s) ;	[1]
(iii) A to acce	B ; eleration = change in speed/time = 0.4/5 = 0.08 m/s ²	² ; [2]
	a under graph implied ; ½ × 0.4 × 5) + (0.4 × 2.5) + (½ × 0.4 × 12.5)/= 1.0 + 1 n ;	.0 + 2.5 ; [3]
	•	L · J