

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Tidge Con

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

COMBINED SCIENCE

0653/23

Paper 2 (Core)

October/November 2012

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages.

[1]

- 1 Flowers are organs in which sexual reproduction takes place.
 - (a) (i) Complete the definition of sexual reproduction. Use words from the list.

	dissimilar	female	haploid		identical	
	ovary	sper	m	zygote		
	Sexual reproduction is the	ne process invo	lving the fus	ion of		
		nuclei to f	orm a diploid	d		
	and the production of ge	netically			offspring.	[3]
(ii)	State the scientific term	for the fusion o	two nuclei.			

(b) Fig. 1.1 shows a section through a flower.

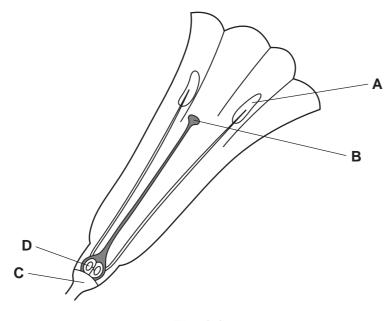


Fig. 1.1

(1)	Name the parts labelled A and B.		
	A		
	В		[2]
(ii)	State the letter of the part in whic	h	
	the male gametes are produced,		
	a zygote is produced.		[2]

(c) After pollination, seeds are produced. A student set up an experiment to investigate conditions needed for the germination of lettuce seeds.

He placed five lettuce seeds on cotton wool in each of five test-tubes. Fig. 1.2 shows the conditions present in each tube.

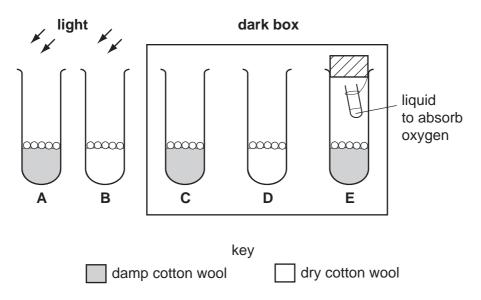
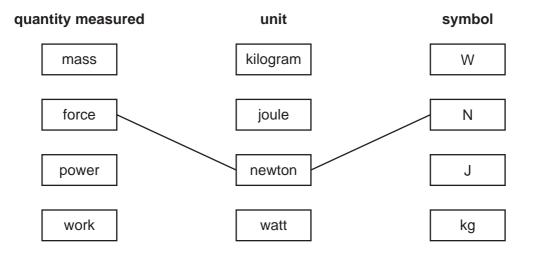


Fig. 1.2

Table 1.1 shows his results.

Table 1.1

tube		conditions		number of seeds that germinated
Α	water	oxygen	light	5
В	no water	oxygen	light	0
С				5
D				0
E				0


(i)	Complete Table 1.1 to show the conditions present in each tube. Tubes A and B have been done for you. [2]
(ii)	What conclusions can the student make from these results?
	[3]

2	(a) (i)	State the percentages of nitrogen and oxygen in the air.
		nitrogen
		oxygen [2]
	(ii)	During a thunderstorm, energy from lightning causes nitrogen and oxygen to combine to form nitric oxide.
		Explain why nitrogen is an example of an <i>element</i> and nitric oxide is an example of a <i>compound</i> .
		[2]
	(iii)	Nitric oxide has the chemical formula, NO.
		Explain what is meant by this formula.
		[2]
	(iv)	What name is given to the type of chemical reaction that occurs when oxygen bonds to another element?
		[1]
		en magnesium burns in air, a white solid is formed. This white solid contains gnesium oxide, MgO.
	(i)	Name the type of chemical bonding in magnesium oxide.
		Explain your answer.
		type of chemical bonding
		explanation
		[2]

(ii)	A student burned some magnesium in air and then added the white solid for water.	's
	She tested the solution with Universal (full range) Indicator and found that the pH was 9.	-
	State a conclusion that the student can draw from this observation.	13.
	[1]	

[2]

3 (a) Draw lines to connect each quantity measured to its correct unit and symbol.One has been done for you.

(b) Fig. 3.1 shows two speed/time graphs for a car.

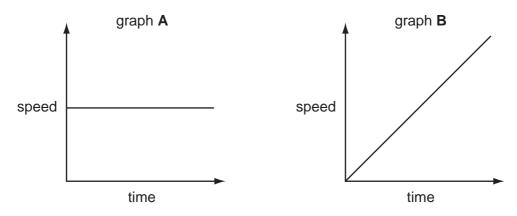


Fig. 3.1

Describe the motion of the car in

graph **A**,
graph **B**.
[2]

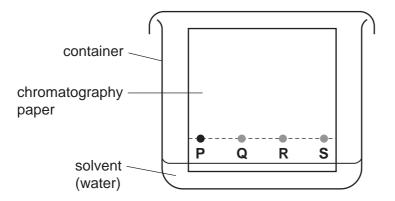
(c)	The	e car travels at 20 m/s for 90 seconds.	For
	Cal	culate the distance covered.	man iner's
	Sta	te the formula that you use and show your working.	26.C
		formula used	For siner's
		working	
		Working	
		m	[2]
(d)	One	e of the car's headlamps has a current of 2A, when the voltage across it is 12V.	
	(i)	Show that the resistance of the headlamp is 6Ω .	
		State the formula that you use and show your working.	
		formula used	
		working	
		9	
			[2]
	(ii)	The car has two of these identical headlamps connected in series.	
		Calculate the total resistance of these two headlamps.	
		State the formula that you use and show your working.	
		formula used	
		working	
			[0]
		Ω	[2]

4

Maı	ny ba	ats are predat	ors that fly at nigh	nt. They eat moths	and other insects.	AG CA
(a)	Und	derline the tw o	words that desc	ribe the position o	f a bat in a food cha	
	Ca	arnivore	consumer	herbivo	ore produ	cer [1]
(b)	Bat	s emit ultraso	und.			
	(i)	Ultrasound is	s sound that has a	a frequency too hi	gh for a human to he	ear.
		Suggest a fre	equency for the u	Itrasound emitted	by bats.	Hz [1]
	(ii)	Underline the	e one word that c	orrectly describes	an ultrasound wave	:.
		electro	omagnetic	longitudinal	transverse	[1]
(c)	Bat	s use echo lo	cation to detect o	bjects around ther	n.	
	The	e reflected ultr	asound waves ar	e detected by spe	cial cells in the bat's	head.
	_				I from a rough surfa nich the sound wave	
		~~~~	rough surface	<b>~</b> ~~	smo	oth surface
				Fig. 4.1		
	(i)	Use the info		1 to describe wha	t happens to the ult	rasound waves
		a rough surfa	ace,			
		a smooth sur	face.			

[1]

	(ii)	Suggest how the bat can tell if it is flying over a rough surface or a smooth seven when it is completely dark.	Canno	For iner's
			[1]	S.COM
(d)	Mar	ny kinds of bat live in trees in forests.		
	List	three ways in which deforestation can damage the environment.		
	1 .			
	2 .			
	3 .		[3]	
				i


5 (a) In many countries, river water is collected and treated to make it safe for hum drink.

State and explain which **two** of the processes shown below are used to treat river water so that it becomes safe to drink.

chlorination crystallisation filtration evaporation

first process	
reason why this process is carried out	
second process	
reason why this process is carried out	[4]

**(b)** Fig. 5.1 shows chromatography being used by a student to investigate mixtures (coloured compounds) used to colour sweets.



key

- Q, R, S dyes extracted from three sweets
  - P mixture of common food dyes

Fig. 5.1

Fig. 5.2 shows the appearance of the chromatography paper after several minutes.

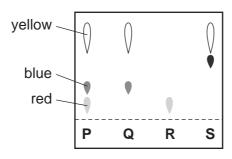



Fig. 5.2

(1)	Deduce and	explain the colour of the sweet which contains only one dye.	
	colour		
	explanation		
			[2]
(ii)	State which the mixture	sweet contained a dye which was <b>not</b> one of the common food dyes <b>P</b> .	in
			[1]

6 (a) Fig. 6.1 shows a washing machine.



Fig. 6.1

Complete the sentence below using **two** of the words in the list.

		heat	kinetic	light	potential	sound	
	A w	ashing machin	e is designed to	o transform el	ectrical energy into		
			ene	ergy and		energy.	[2]
(b)	(i)		vater inside the	_	hine evaporates.		
		Explain the pr	ocess or evapo	ration in terms	s or particles.		
						•••••	
							[2]
	(ii)	Explain why e	vaporation has				
							[1]

(c)	The casing of the washing machine is a solid. The water used in it is a liquid.	Co
	Complete the diagrams below to show the arrangement of particles in a solid and in liquid.	
	solid	
	ı	[2]
(d)	Before buying a washing machine, a person may research several types to find of which washing machine has the greatest energy efficiency.  Explain the meaning of the term <i>efficiency</i> .	out
		[1]

7 (a) Fig. 7.1 shows two human teeth.

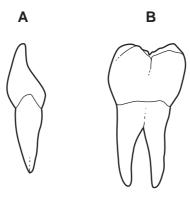



Fig. 7.1

		J			
(i)	Name the <b>two</b> types of	of teeth shown ir	n Fig. 7.1.		
	tooth A				
	tooth B			[2	2]
(ii)	Explain how tooth <b>B</b> h	nelps to digest a	food such as brea	ad.	
				[2	2]
	each part of the digeactions.	stive system in t	the list below, tick	(✓) the correct function of	or
	part	ingestion	digestion	absorption	
	mouth				
	stomach				
	small intestine				

[3]

Please turn over for Question 8.

			16
8			copper is a very important material that has been extracted from hds for thousands of years.
	(a)	(i)	The wires used in many electrical devices are made from copper.
			State the <b>two</b> properties of metals such as copper, that make them suitable for making electrical wires.
			1
			2[2]
	(		Copper wires are connected to the mains electrical supply using brass plugs Brass is an alloy.
			brass plug copper wire
			Explain the meaning of the term <i>alloy</i> and state <b>one</b> difference in the physica properties of brass compared to copper.
			meaning of alloy
			difference in physical property

(iii) One of the processes used in the extraction of copper involves heating copper(I) sulfide in air.

One of the reactions that occurs is between copper(I) sulfide and oxygen. This reaction also produces sulfur dioxide.

[2]

Construct the **word** chemical equation for this reaction.

(b) Copper may also be formed by the electrolysis of an aqueous solution of chloride using electrodes made of graphite (carbon).

Fig. 8.1 shows a laboratory apparatus a student used to carry out this electrolysis reaction.

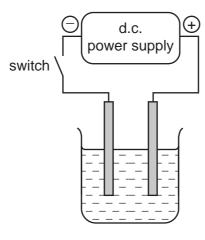



Fig. 8.1

(i)	What is the electrolyte in this electrolysis reaction?
	[1
(ii)	Name the product formed and describe what is observed at the surface of each electrode when an electric current is passing through the circuit.
	positive electrode
	product
	observation
	negative electrode
	product
	observation [4

[3]

(a) Complete Table 9.1 to show the circuit symbol for each of the named component.

Table 9.1

component	symbol
ammeter	
fuse	
variable resistor	

(b) Fig. 9.1 shows an electrical circuit for a torch (flashlight).

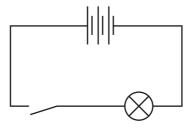



Fig. 9.1

(i)	How many cells are fitted in the torch?	[1]
(ii)	A voltmeter is used to check the voltage across the light bulb.	
	Draw the symbol for the voltmeter in the correct position on the circuit.	[1]

(c) A single ray of light from a torch is shone onto a mirror as shown in Fig. 9.2.

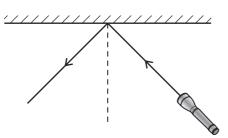



Fig. 9.2

- [1] (i) On Fig. 9.2, label the angle of incidence and angle of reflection.
- (ii) The angle of incidence = 45°.

Write down the value of the angle of reflection. [1]

The Periodic Table of the Elements DATA SHEET

										VIIIV.	Axtrapapers.com Papacambridge.com
					2	U					abo
	0	Heium 2	20 <b>Ne</b> Neon 10	40 <b>Ar</b> Argon	84 <b>K</b> rypton 36	131 <b>Xe</b> Xe Xenon Xenon 54	Radon 86		175 <b>Lu</b> Lutetium 71	Lr Lawrencium 103	Cambric
	=		19 Fluorine	35.5 <b>C1</b> Chlorine	80 <b>Br</b> Bromine 35	127	At Astatine 85		173 <b>Yb</b> Ytterbium 70	Nobelium 102	Se con
	5		16 Oxygen 8	32 <b>S</b> Suffur 16	Selenium 34	128 <b>Te</b> Tellurium 52	Po Polonium 84		169 <b>Tm</b> Thulium	Md Mendelevium 101	
	>		14 <b>N</b> itrogen 7	31 <b>P</b> Phosphorus 15	75 <b>AS</b> Arsenic 33	122 <b>Sb</b> Antimony 51	209 <b>Bi</b> Bismuth 83		167 <b>Er</b> Erbium 68	Fm Fermium 100	- 1
	≥		12 Carbon 6	28 <b>Si</b> Silicon	73 <b>Ge</b> Germanium	119 <b>Sn</b> Tin	207 <b>Pb</b> Lead		165 <b>Ho</b> Holmium 67	Es Einsteinium 99	(r.t.p.).
	≡		5 Boron 2	27 <b>A 1</b> Auminium 13	70 <b>Ga</b> Gallium 31	115   n   Indium 49	204 <b>T t</b> Thallium		162 <b>Dy</b> Dysprosium 66	<b>Cf</b> Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					65 <b>Zn</b> Zinc 30	112 <b>Cd</b> Cadmium 48	201 <b>Hg</b> Mercury 80		159 <b>Tb</b> Terbium 65	<b>BK</b> Berkelium 97	ature and
					64 Copper 29	108 <b>Ag</b> Silver 47	197 <b>Au</b> Gold		157 <b>Gd</b> Gadolinium 64	Carrium Ourium	n tempera
Group					59 <b>X</b> Nickel 28	106 <b>Pd</b> Palladium 46	195 <b>Pt</b> Patinum 78		152 <b>Eu</b> Europium 63	Am Americium 95	n³ at roor
Gre					59 <b>Co</b> Cobalt 27	103 <b>Rh</b> Rhodium 45	192   <b>  r</b>     <b>  r</b>		150 <b>Sm</b> Samarium 62		ıs is 24 dr
		T Hydrogen			56 <b>Fe</b> Iron	Ru Ruthenium 44	190 <b>OS</b> Osmium 76		Pm Promethium 61	Neptunium	of any ga
					Mn Manganese 25	Tc Technetium 43	186 <b>Re</b> Rhenium 75		144 <b>Na</b> Neodymium 60	238 <b>U</b> Uranium 92	one mole
					Cr Chromium 24	96 <b>Mo</b> Molybdenum 42	184 <b>W</b> Tungsten 74		141 <b>Pr</b> Praseodymium 59	Pa Protactinium 91	olume of c
					51 V Vanadium 23	93 Nobium 41	181 <b>Ta</b> Tantalum		140 <b>Ce</b> Cerium	232 <b>Th</b> Thorium 90	The vo
					48 <b>Ti</b> Titanium	2r Zr Zirconium 40	178 <b>Hf</b> Hathium * 72			nic mass ool ic) number	
					45 Sc Scandium 21	89 <b>Y</b> Yttrium 39	Lanthanum *57 **	227 <b>Ac</b> Actinium 89	series eries	a = relative atomic mass  X = atomic symbol b = proton (atomic) number	
	=		9 <b>Be</b> Beryllium	24 <b>Mg</b> Magnesium 12	40 <b>Ca</b> Calcium 20	Sr Strontium	137 <b>Ba</b> Barium 56	226 <b>Ra</b> Radium 88	*58-71 Lanthanoid series	x a	
	_		7 Lithium	23 <b>Na</b> Sodium	39 <b>K</b> Potassium 19	Rb Rubidium 37	Ceesium 55	<b>Fr</b> Francium 87	*58-71 Le	Key b	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.