

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

Paper 3 (Extended)
October/November 2012
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs, tables or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
A copy of the Periodic Table is printed on page 24.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of $\mathbf{2 2}$ printed pages and $\mathbf{2}$ blank pages.

International Examinations

1 Fig. 1.1 shows a red blood cell and a root hair cell.

Fig. 1.1
(a) Name the red protein found in the cytoplasm of the red blood cell.
(b) (i) State the function of a root hair cell.
\qquad
(ii) Explain how the root hair cell is adapted to carry out this function.
\qquad
\qquad
\qquad
\qquad
(c) Fig. 1.2 shows a plant with its roots in a beaker of water containing a blue dye.

Fig. 1.2

After 10 minutes, the stem of the plant was cut across at \mathbf{X}. Fig. 1.3 sho appearance of the cut stem seen through a microscope.

Fig. 1.3
(i) On Fig. 1.3, use a pencil to shade all of the parts that would look blue.
(ii) The blue dye eventually reached the leaves of the plant. The following parts of the plant all became blue.

A leaf mesophyll cells
B xylem cells
C root hair cells
List the letters in order, to show the sequence in which the cells would become blue.
first to become blue
last to become blue
(iii) Describe how water is lost from the leaves of plants.
\qquad
\qquad
\qquad
\qquad

2 (a) In 2002 some research scientists claimed that they had produced a tiny amou new element that had a proton number of 118.

The scientists predicted that this element should be placed in Period 7 and Group 0 of the Periodic Table.

State the total number of electrons and the number of electron shells (energy levels) in one atom of this element.
total number of electrons \qquad
number of electron shells
(b) The halogens are reactive elements found in Group 7 of the Periodic Table.

Halogens combine vigorously with the alkali metals from Group 1 to form colourless ionic compounds. The halogens and alkali metals from Periods 2 to 5 are shown in Fig. 2.1.

Fig. 2.1
(i) A student has a colourless solution which he knows is either potassium bro potassium iodide.

The student adds chlorine solution as shown in Fig. 2.2.

Fig. 2.2
Predict the colour the student would see if the test-tube contained

- potassium bromide,
- potassium iodide.
\qquad
\qquad
Explain your predictions.
\qquad
\qquad
\qquad
\qquad
(ii) The student is asked to predict which pair of elements, chosen from those in Fig. 2.1, would react together most vigorously.

He predicts that the reaction between lithium and fluorine would be the most vigorous.

Explain whether or not the student has made a correct prediction.
\qquad
\qquad
\qquad
(c) Potassium bromide contains potassium ions, K^{+}and bromide ions, Br^{-}.

Construct a balanced symbolic equation for the reaction between potassium and bromine to form potassium bromide.

3 Fig. 3.1 shows four swimmers at the start of a race.

Fig. 3.1
(a) The swimmers start their race when they hear a loud, high-pitched sound from a loudspeaker.
(i) Explain why sound travels at a different speed through water than through air.
\qquad
\qquad
\qquad
(ii) Fig. 3.2 shows the trace of a sound wave as it appears on an oscilloscope screen.

On Fig. 3.2 draw another trace of a sound wave from a sound that is louder than the one shown, but has the same pitch.

Fig. 3.2
(iii) The swimmers can hear the sound from the loudspeaker only if the frequency of the sound lies within a range of frequencies which the human ear can detect.

State this range of frequencies.
\qquad Hz to \qquad Hz
(iv) Waves are either longitudinal or transverse.

State whether each of the following is an example of a transverse or longitudin wave.
the sound waves produced by the loudspeaker \qquad
the water waves produced by the swimmers in the pool
(b) Sound travels at $330 \mathrm{~m} / \mathrm{s}$ in air. One swimmer is 0.4 m from the loudspeaker when he hears the sound.
(i) Calculate the time taken for the sound to travel from the loudspeaker to the swimmer.

State the formula that you use and show your working.
formula used
working
(ii) The loudspeaker produces a sound with a frequency of 2200 Hz .

Calculate the wavelength of this sound.
State the formula that you use and show your working.
formula used
working

4 (a) Fig. 4.1 shows part of a food web in a forest ecosystem.

Fig. 4.1
(i) Define the term ecosystem.
\qquad
\qquad
\qquad
(ii) What do the arrows in the food web represent?
\qquad
(iii) State the trophic level at which spiders feed.
(iv) The food web contains several food chains.

Explain why food chains usually have fewer than five trophic levels.
\qquad
\qquad
\qquad
(b) The food web shows that bees depend on plants. Some flowering plants also on bees to help them to reproduce.

Explain how bees help flowering plants to reproduce.

Explain how bees help flowering plants reproduce.
\qquad
\qquad
\qquad
\qquad
\qquad

5 (a) A student investigated the reaction between antacid tablets and dilute hydro acid.

The antacid tablets contain a mixture of sodium hydrogencarbonate, calcium carbonate and magnesium carbonate.

Fig. 5.1 shows one of the experiments the student carried out.

Fig. 5.1
Carbon dioxide gas was given off when the antacid tablet reacted with the dilute hydrochloric acid.

Describe and explain the change in appearance of the limewater during the experiment.
\qquad
\qquad
\qquad
(b) Fig. 5.2 shows apparatus the student used to measure the rate of reaction antacid tablets and hydrochloric acid.

- He added both hydrochloric acid and water to the side-arm test-tube to produce diluted hydrochloric acid.
- He dropped an antacid tablet into the diluted hydrochloric acid and immediately inserted the bung.
- He started the stop clock and timed how long it took for $25 \mathrm{~cm}^{3}$ of gas to bubble up into the measuring cylinder.

Fig. 5.2
The student carried out four experiments $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in which he investigated the effect of changing reaction conditions on the rate.

Table 5.1 shows the data the student obtained.
Table 5.1

	volume of hydrochloric acid used $/ \mathbf{c m}^{\mathbf{3}}$	volume of water used $/ \mathbf{c m}^{\mathbf{3}}$	temperature of diluted hydrochloric acid $/{ }^{\circ} \mathbf{C}$	time taken to collect $\mathbf{2 5} \mathbf{c m}^{\mathbf{3}}$ gas $/ \mathbf{s e c o n d s}$
A	20	0	35	18
B	20	0	25	36
C	15	5	25	48
D	10	10	25	72

(i) State in which experiment, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, the reaction rate was the lowest.
(ii) State briefly the conclusions the student can draw from the results of experiments \mathbf{A} and \mathbf{B} and from the results of experiments \mathbf{B}, \mathbf{C} and \mathbf{D}.
conclusion from experiments \mathbf{A} and \mathbf{B}
\qquad
\qquad
conclusion from experiments \mathbf{B}, \mathbf{C} and \mathbf{D}
\qquad
\qquad
(iii) Explain the conclusion from experiments \mathbf{A} and \mathbf{B}, in terms of collisions between particles.
\qquad
\qquad
\qquad
\qquad

6 (a) Fig. 6.1 shows a circuit for measuring the current through a filament lamp potential difference is changed.

Fig. 6.1

Fig. 6.2 shows a graph of the results from an experiment using this circuit.

Fig. 6.2
(i) Use the graph to calculate the resistance of the lamp when the potential dit was 2.0 V and when the potential difference was 4.0 V .

State the formula that you use and show your working.
formula used
working
resistance at 2.0 V \qquad
resistance at 4.0 V [2]
(ii) Describe how the current through the filament lamp changes as the voltage increases above 2.0 V .
\qquad
(b) A single ray of light from a torch (flashlight) is shone onto a mirror as shown in Fig. 6.3.

Fig. 6.3
(i) Label the angle of incidence and angle of reflection.
(ii) The angle of incidence $=45^{\circ}$.

Write down the value of the angle of reflection.

7 (a) Fig. 7.1 shows the human alimentary canal.

Fig. 7.1

State the letter that indicates
the liver, \qquad the area where digested food is absorbed. \qquad
(b) Lipase is an enzyme that catalyses the breakdown of fats to fatty acids and glycerol.
fat \longrightarrow fatty acids + glycerol
A student carried out an experiment to investigate the effect of temperature on the rate of the breakdown of fats by lipase. Fig. 7.2 shows how she set up the two test-tubes.

Fig. 7.2

The indicator that the student used changes colour from blue to yellow when falls below 5 .

Table 7.1 shows her results.
Table 7.1

time/minutes	tube $\mathbf{A}\left(\mathbf{4}^{\circ} \mathbf{C}\right)$	tube $\mathbf{B}\left(\mathbf{3} 0^{\circ} \mathbf{C}\right)$
0	blue	blue
5	blue	yellow
10	blue	yellow
15	yellow	yellow

(i) Using the information in the word equation, explain why the indicator eventually changed to yellow in both tubes.
\qquad
\qquad
\qquad
(ii) Explain the reason for the difference between the results for tube \mathbf{A} and tube \mathbf{B}.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Fat is an important component of a balanced diet.

Explain why a balanced diet should not contain too much fat.
\qquad
\qquad
\qquad
\qquad

8 Large amounts of chemical energy are stored in the world's reserves of fossil fuels natural gas and petroleum (crude oil).
(a) (i) Name the main compound in natural gas.
\qquad
Write the word chemical equation for the complete combustion of this compound.
(ii) Before it is refined, petroleum contains sulfur compounds.

Describe and explain how water in rivers and lakes could become polluted if sulfur compounds are not removed from fossil fuels before they are used.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Sulfur is removed from petroleum by combining it with hydrogen to form the gaseous compound hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$. Sulfur is in Group 6 of the Periodic Table.

Complete the bonding diagram of one molecule of hydrogen sulfide below to show

- the chemical symbols of the elements
- how the outer electrons in each element are arranged.

9 Fig. 9.1 shows a toy car travelling over a plastic surface.

Fig. 9.1
(a) The car, of mass 0.5 kg is moving at a steady speed of $0.5 \mathrm{~m} / \mathrm{s}$.

Calculate the kinetic energy of the car.
State the formula that you use and show your working.
formula used
working
(b) While the car is moving, the wheels are rubbing against the plastic surface. The car becomes electrostatically charged with a positive charge.

Explain how this happens.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) A speed - time graph for the car is shown in Fig. 9.2. It shows the motion of the c a 25 second period.

Fig. 9.2
(i) State the part of the graph when the car is not moving.
(ii) State one part of the graph when the car was travelling at constant speed and write down the value of this speed.
part of graph \qquad
speed \qquad
(iii) State one part of the graph when the car was accelerating and calcula acceleration.

Show your working.
part of graph \qquad
acceleration
(iv) Calculate the distance travelled by the car between \mathbf{A} and \mathbf{D}.

Show your working.

22
DATA SHEET
The Periodic Table of the

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
DATA SHEET
The Periodic Table of the Elements

