

CANDIDATE NAME

CENTRE NUMBER

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	www.xtrapape	rs.com
IIVERSITY OF CAMBRIDGE INTER ernational General Certificate of Sec		Ge.Com
	CANDIDATE NUMBER	

COMBINED SCIENCE

0653/22

Paper 2 (Core)

May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electrical calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

WANN, PAPAC CAMBRIDGE, COM (a) Fig. 1.1 shows some of the elements in Group 1 of the Periodic Table. Li Na K Fig. 1.1 (i) Name the gas which is given off when the metals in Fig. 1.1 react with water. [1] (ii) Describe how the rate of reaction between water and the metals in Fig. 1.1 changes as you go down the group. **(b)** Fig. 1.2 shows some of the elements in Group 7 of the Periodic Table. C1Br Ι Fig. 1.2 (i) Describe how the melting point of the elements in Fig. 1.2 changes as you go down the group. [1] (ii) A solution of potassium bromide is colourless and a solution of chlorine is almost colourless. Describe and explain briefly what would be seen when these solutions are mixed. what would be seen explanation

(c) Phosphorus is a non-metallic, solid element.

One form of phosphorus is white, has the chemical formula P₄ and has to be ken under water.

Fig. 1.3 shows a bottle containing phosphorus.

Fig. 1.3

(i)	Suggest why white phosphorus has to be stored under water.	
		•
	[2]
(ii)	Explain the meaning of the chemical formula P ₄ .	
		<u></u> 2]

			Fig. 2.1				
(i)	Name the main	n force that opp	oses the m	otion of the toy ele	ephant.		
			•••				[1]
(ii)	State the unit u	used to measur	e forces.				
							[1]
(iii)		from the list bore than once o		mplete the senten	ces. You ma	ay use ea	ach
	chemical	electrical	gravi	tational potential	kin	etic	
	ligi	ht so	und		thermal		
	The useful ene	ergy transfer for	the toy is			energy	y
	to		ene	ergy.			
	The energy wa	asted by the toy	' is		ener	gy.	[2]
(iv)	The toy elepha	ant travels 1.2 n	netres in 3	seconds.			
	Calculate the a	average speed	of the eleph	nant.			
	State the form	ula that you use	e and show	your working.			
	formula						
	working						
	working						
						m/s	[2]
						111/3	[4]

(b) An elephant of mass 5000 kg exerts a constant force to push a tree trunk alon steady speed of 1.5 m/s.

		te the two quantities that would need to be measured to calculate the work done by elephant.
		and [2]
(c)		elephant can communicate with other elephants using infrasound. This is a very low quency vibration which it is usually impossible for a human to hear.
	(i)	Suggest a possible frequency for this vibration and explain why you chose your answer.
		frequency Hz
		explanation
		[2]
	(ii)	State the meaning of the term <i>frequency</i> .
		[1]

[Turn over © UCLES 2013

3 (a) Four sets of pea seeds were placed in Petri dishes containing either damp soil of filter paper. They were left in different conditions, shown in Table 3.1.

Table 3.1

set	con	ditions	
Α	damp soil	cold	dark
В	damp filter paper	warm	light
С	damp filter paper	warm	dark
D	damp soil	cold	light

Predict which sets of seeds will germinate.

Explain your answer.

prediction	
explanation	
	[3]

- **(b)** A pea seed was planted in a pot. When the seed had grown into a young plant, the pot was placed on its side in a room where light was coming from all sides.
 - Fig. 3.1 shows the young pea plant three days after the pot had been placed on its side.

Fig. 3.1

(i) Which **two** terms describe the response of the plant shown in Fig. 3.1? Circle the correct answers.

geotropism	photosynthesis	phototropism	
sensi	tivity trans	piration	[2]

(ii)	Suggest how this response will help the plant to reproduce sexually when grown to maturity.	COM
	[2	

Fig. 4.1

- (a) Microwaves cook food by transferring energy to the food.
 - (i) Choose words from the list to complete the sentences below. You may use each word once, more than once or not at all.

chemical	conduction	convection
potential	radiation	thermal

Microwaves are absorbed by the outer layers of food.

The microwave energy is transferred to water and fat molecules in these layers,

increasing the _____ energy of these layers.

energy is mostly transferred to the centre of solid food by ______. [2]

(ii) State one use for microwaves other than cooking.

[1]

(b) Water can be heated in a microwave oven. The microwave oven is made of solids. The water is a liquid.

Complete Fig. 4.2 to show the arrangement of particles in a solid. The diagram for a liquid has been done for you.

liquid

solid

[2]

Fig. 4.2

5	(a) (i)	Explain why hydrogen and carbon are described as elements, but hydroc such as methane and ethane are described as compounds.	Call
			[2]
	(ii)	Name the fossil fuel found in the Earth that is the main source of methane.	
			[1]
	(iii)	Name one type of fossil fuel that is a solid.	[1]
	(iv)	Methane is used as a fuel because it reacts very quickly with oxygen, releasineat.	ing
		Name the two compounds that are formed when methane undergoes comple combustion.	ete
		1	
		2	[2]
	(b) Ma	gnesium metal also reacts quickly with oxygen, releasing heat.	
	(i)	Name the compound which is formed when magnesium reacts with oxygen.	
			[1]

(ii) Fig. 5.1 shows diagrams of a magnesium atom and an oxygen atom.

Fig. 5.1

When magnesium reacts with oxygen, the atoms shown in Fig. 5.1 first change into electrically charged atoms known as ions.

Describe what happens when these atoms change into ions.

magnesium	
ovvagon	
oxygen	
	[2]

6 Fig. 6.1 shows a food chain. The arrows show how energy flows from one organ another, along the chain.

Fig. 6.1

		3	
(a)	Ene	ergy enters the food chain as sunlight. Plant leaves use this energy to make food.	
	(i)	Name the substance in the leaves of a plant that absorbs this energy.	
			[1]
	(ii)	Name the two raw materials that the plant uses to make food.	
		1 2 [[2]
	(iii)	Name the gas released from plant leaves during this process.	
			[1]
(b)	A s	sheep is a herbivore.	
	De	fine the term herbivore.	
			[2]
'~\	Ma	at from the about contains protein	
C)	ivie	at from the sheep contains protein.	
	De	scribe the importance of protein in the diet.	
			[2]

(d)	The cells in the man's body use respiration to release useful energy from nutrienthe has absorbed. (i) Tick the processes in the list below that use energy.						
	(i)	Tick the processes in the list below that use energy.		1000			
		the diffusion of oxygen from the lungs into the blood		1.6			
		the passage of nerve impulses along a nerve cell		`			
		muscle contraction					
		protein synthesis	[1]				
	(ii)	A person living in a very cold climate generally needs to living in a hot climate.	eat more than a person				
		Explain why.					

(a)	The	e diagrams below show the circuit symbols for three components of an electrical shlight).
	(i)	On the line below each diagram, state the name of the component.
	-	
		[3]
	(ii)	Using only these symbols, draw a circuit diagram for a torch.
		[1]
(b)		ches are usually powered by electrical cells. They can also be powered by energy n the Sun (solar energy).
	Sol	ar energy is a renewable energy resource.
	(i)	Name one other renewable energy resource.
		[1]
	(ii)	Name one non-renewable energy resource.
	(iii)	Energy is transferred from the Sun to the Earth by radiation.
	(''')	Explain why energy cannot be transferred from the Sun to the Earth by conduction.
		[1]

[Turn over

7

[2]

(c) A ray of light from the torch is reflected by a mirror. This is shown in Fig. 7.1.

Fig. 7.1

Angle **a** has a value of 45°.

Name	angle	b	and	write	down	its	value.

name	
value	0

© UCLES 2013

8 (a) A student added a solution of the same dilute acid to each of the test-tubes shown in Fig. 8.1.

Fig. 8.1

Complete Table 8.1 by matching the test-tubes, P, Q, R and S, with the observations which are made when the dilute acid reacts with the contents.

One of the observations applies to more than one of the test-tubes. You may use each letter once, more than once or not at all.

Table 8.1

observations	test-tube(s)
Hydrogen gas is given off.	
A blue solution is formed.	
Carbon dioxide gas is given off.	

[3]

(b) The student used the apparatus shown in Fig. 8.2 to investigate neutral reactions involving three acids, A, B and C.

Fig. 8.2

25.0 cm³ of the same solution of the alkali, sodium hydroxide, were placed into each of three beakers.

Acid was slowly added to each of the beakers in turn, and the pH values of the mixtures were displayed on the computer screen.

Some of the measurements from the three experiments are shown in Table 8.2.

Table 8.2

acid	source of acid	volume required to neutralise the alkali/cm ³
Α	sample taken from an acidic lake	42.0
В	sample taken from a car battery	15.0
С	acid from a chemical laboratory	60.0

(i)	Suggest a possible pH value of the alkali before any acid was added.						
	[1]						
(ii)	Describe briefly what the student would observe when the acid had neutralised the alkali.						
	[1]						

(iii)	State, with a reason, which acid, A , B or C , had the highest concentration.
	acid
	reason
	[1]
(iv)	The student noticed that, in all three experiments, the temperature of the mixture increased as the acid was added.
	Suggest why the temperature increased.
	[1]
(v)	Complete the general word equation for the reaction which occurs between an acid and an alkali.
acid	+ alkali +
	[2]

9 Fig. 9.1 shows a section through a small blood vessel.

Fig. 9.1

(a)	Cel	I A is a red blood cell.	
	(i)	Outline two ways in which this cell differs from a liver cell.	
		1	
		2	[2]
	(ii)	Describe the function of a red blood cell.	
			••••
			••••
			[2]
(b)	Des	scribe the function of cell B .	
			••••
			••••
			[0]

(c) Complete the sentences about the functions of blood plasma, using words from You may use each word once, more than once, or not at all.

adrenaline enzymes insoluble small intestine soluble stomach starch vitamins

Blood plasma transports	nutrients such as sugars.	
These nutrients enter the blood in the	·	
Blood plasma also transports hormone	es such as	[3]

DATA SHE	The Periodic Table of the Elements
----------	------------------------------------

								_	1	WWW.	xtrapapers.com
					2	0					Pala
	0	4 Heium	20 Ne on 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon		Lutetium 771	Lr Lawrencium 103	Astrapapers.com Papacambridge.com
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 T lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	Se CON
	I		16 Oxygen 8	32 S Sulfur 16	Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md Mendelevium 101	
	>		14 N itrogen 7	31 P Phosphorus 15	75 As Arsenic 33	Sb Antimony 51	209 Bis Bismuth 83		167 Er Erbium 68	Fm Fermium 100	
	>		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99	(r.t.p.).
	Ξ		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Celifornium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					65 Zn 2inc 30	112 Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium 65	BK Berkelium 97	ature and
					64 Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium	n tempera
Group					Nickel 28	106 Pd Palladium 46	195 Pt Patinum 78		152 Eu Europium 63	Am Americium 95	ກ³ at roor
Gre					59 Co Cobalt	Rh Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Putonium 94	ıs is 24 dr
		T Hydrogen			56 Fe Iron	Rut Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np	of any ga
					Manganese	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60		one mole
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91	olume of
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium	The v
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nic mass Ibol nic) number	
		ŗ			Scandium 21	89 ×	139 La Lanthanum 57 *	227 Ac Actinium 89	l series eries	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium 20	Sr Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	е Х	
	_		7 Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L _i	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.