CANDIDATE NAME

| CENTRE |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NUMBER |\quad| | |
| :--- | :--- |
| | |
| | |

CANDIDATE NUMBER

COMBINED SCIENCE

0653/22
Paper 2 (Core)
May/June 2013
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
Electrical calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of $\mathbf{2 0}$ printed pages.

1 (a) Fig. 1.1 shows some of the elements in Group 1 of the Periodic Table.

Fig. 1.1
(i) Name the gas which is given off when the metals in Fig. 1.1 react with water.
(ii) Describe how the rate of reaction between water and the metals in Fig. 1.1 changes as you go down the group.
\qquad
\qquad
(b) Fig. 1.2 shows some of the elements in Group 7 of the Periodic Table.

Fig. 1.2
(i) Describe how the melting point of the elements in Fig. 1.2 changes as you go down the group.
\qquad
\qquad
(ii) A solution of potassium bromide is colourless and a solution of chlorine is almost colourless.

Describe and explain briefly what would be seen when these solutions are mixed. what would be seen \qquad explanation
\qquad
(c) Phosphorus is a non-metallic, solid element.

One form of phosphorus is white, has the chemical formula P_{4} and has to be $k e$ under water.

Fig. 1.3 shows a bottle containing phosphorus.

Fig. 1.3
(i) Suggest why white phosphorus has to be stored under water.
\qquad
\qquad
\qquad
(ii) Explain the meaning of the chemical formula P_{4}.
\qquad
\qquad
\qquad

2 (a) Fig. 2.1 shows a child's toy. As the ball falls, the toy elephant moves across the

Fig. 2.1
(i) Name the main force that opposes the motion of the toy elephant.
\qquad
(ii) State the unit used to measure forces.
\qquad
(iii) Choose words from the list below to complete the sentences. You may use each word once, more than once or not at all.
chemical electrical gravitational potential kinetic
light sound thermal

The useful energy transfer for the toy is \qquad energy
to \qquad energy.

The energy wasted by the toy is \qquad energy.
(iv) The toy elephant travels 1.2 metres in 3 seconds.

Calculate the average speed of the elephant.
State the formula that you use and show your working.
formula
working
(b) An elephant of mass 5000 kg exerts a constant force to push a tree trunk alo steady speed of $1.5 \mathrm{~m} / \mathrm{s}$.

State the two quantities that would need to be measured to calculate the work done by the elephant. and
(c) An elephant can communicate with other elephants using infrasound. This is a very low frequency vibration which it is usually impossible for a human to hear.
(i) Suggest a possible frequency for this vibration and explain why you chose your answer.
frequency Hz
explanation \qquad
\qquad
(ii) State the meaning of the term frequency.
\qquad

3 (a) Four sets of pea seeds were placed in Petri dishes containing either damp soil o filter paper. They were left in different conditions, shown in Table 3.1.

Table 3.1
Table

set	conditions		
A	damp soil	cold	dark
B	damp filter paper	warm	light
C	damp filter paper	warm	dark
D	damp soil	cold	light

Predict which sets of seeds will germinate.
Explain your answer.
prediction \qquad
explanation \qquad
\qquad
\qquad
(b) A pea seed was planted in a pot. When the seed had grown into a young plant, the pot was placed on its side in a room where light was coming from all sides.

Fig. 3.1 shows the young pea plant three days after the pot had been placed on its side.

Fig. 3.1
(i) Which two terms describe the response of the plant shown in Fig. 3.1?

Circle the correct answers.
geotropism
photosynthesis
phototropism
(ii) Suggest how this response will help the plant to reproduce sexually whe grown to maturity.
\qquad
\qquad
\qquad

4 Fig. 4.1 shows a microwave oven.

Fig. 4.1
(a) Microwaves cook food by transferring energy to the food.
(i) Choose words from the list to complete the sentences below. You may use each word once, more than once or not at all.

chemical	conduction	convection
potential	radiation	thermal

Microwaves are absorbed by the outer layers of food.
The microwave energy is transferred to water and fat molecules in these layers,
increasing the \qquad energy of these layers.
\qquad energy is mostly transferred to the
centre of solid food by \qquad ..
(ii) State one use for microwaves other than cooking.
\qquad
(b) Water can be heated in a microwave oven. The microwave oven is made of solids. The water is a liquid.

Complete Fig. 4.2 to show the arrangement of particles in a solid. The diagram for a liquid has been done for you.

liquid

solid

Fig. 4.2

5 (a) (i) Explain why hydrogen and carbon are described as elements, but hydroc such as methane and ethane are described as compounds.
\qquad
\qquad
(ii) Name the fossil fuel found in the Earth that is the main source of methane.
\qquad
(iii) Name one type of fossil fuel that is a solid.
(iv) Methane is used as a fuel because it reacts very quickly with oxygen, releasing heat.

Name the two compounds that are formed when methane undergoes complete combustion.

1 \qquad
2
(b) Magnesium metal also reacts quickly with oxygen, releasing heat.
(i) Name the compound which is formed when magnesium reacts with oxygen.
(ii) Fig. 5.1 shows diagrams of a magnesium atom and an oxygen atom.

Fig. 5.1
When magnesium reacts with oxygen, the atoms shown in Fig. 5.1 first change into electrically charged atoms known as ions.

Describe what happens when these atoms change into ions.
magnesium \qquad
\qquad
oxygen

6 Fig. 6.1 shows a food chain. The arrows show how energy flows from one orga
Fig. 6.1 shows a food ch
another, along the chain.

Fig. 6.1
(a) Energy enters the food chain as sunlight. Plant leaves use this energy to make food.
(i) Name the substance in the leaves of a plant that absorbs this energy.
\qquad
(ii) Name the two raw materials that the plant uses to make food.
\qquad
(iii) Name the gas released from plant leaves during this process.
\qquad
(b) A sheep is a herbivore.

Define the term herbivore.
\qquad
\qquad
(c) Meat from the sheep contains protein.

Describe the importance of protein in the diet.
\qquad
\qquad
\qquad
(d) The cells in the man's body use respiration to release useful energy from nutrie (d) he has absorbed.
(i) Tick the processes in the list below that use energy.
the diffusion of oxygen from the lungs into the blood the passage of nerve impulses along a nerve cell muscle contraction
protein synthesis
\square
\square
\square
(ii) A person living in a very cold climate generally needs to eat more than a person living in a hot climate.

Explain why.
\qquad
\qquad
\qquad

7 (a) The diagrams below show the circuit symbols for three components of an electn (flashlight).
(i) On the line below each diagram, state the name of the component.

.. \qquad
\qquad
(ii) Using only these symbols, draw a circuit diagram for a torch.
(b) Torches are usually powered by electrical cells. They can also be powered by energy from the Sun (solar energy).

Solar energy is a renewable energy resource.
(i) Name one other renewable energy resource.
\qquad
(ii) Name one non-renewable energy resource.
\qquad
(iii) Energy is transferred from the Sun to the Earth by radiation.

Explain why energy cannot be transferred from the Sun to the Earth by conduction.
\qquad
\qquad
(c) A ray of light from the torch is reflected by a mirror. This is shown in Fig. 7.1.

Fig. 7.1
Angle a has a value of 45°.
Name angle band write down its value.
name \qquad
value。

8 (a) A student added a solution of the same dilute acid to each of the test-tubes shown in Fig. 8.1.

Fig. 8.1

Complete Table 8.1 by matching the test-tubes, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}, with the observations which are made when the dilute acid reacts with the contents.

One of the observations applies to more than one of the test-tubes. You may use each letter once, more than once or not at all.

Table 8.1

observations	test-tube(s)
Hydrogen gas is given off.	
A blue solution is formed.	
Carbon dioxide gas is given off.	

(b) The student used the apparatus shown in Fig. 8.2 to investigate neutra reactions involving three acids, A, B and C.

Fig. 8.2
$25.0 \mathrm{~cm}^{3}$ of the same solution of the alkali, sodium hydroxide, were placed into each of three beakers.

Acid was slowly added to each of the beakers in turn, and the pH values of the mixtures were displayed on the computer screen.

Some of the measurements from the three experiments are shown in Table 8.2.
Table 8.2

acid	source of acid	volume required to neutralise the alkali $/ \mathrm{cm}^{3}$
A	sample taken from an acidic lake	42.0
B	sample taken from a car battery	15.0
C	acid from a chemical laboratory	60.0

(i) Suggest a possible pH value of the alkali before any acid was added.
(ii) Describe briefly what the student would observe when the acid had neutralised the alkali.
\qquad
\qquad
(iii) State, with a reason, which acid, \mathbf{A}, \mathbf{B} or \mathbf{C}, had the highest concentration. acid \qquad
reason \qquad
\qquad
(iv) The student noticed that, in all three experiments, the temperature of the mixture increased as the acid was added.

Suggest why the temperature increased.
\qquad
\qquad
(v) Complete the general word equation for the reaction which occurs between an acid and an alkali.
acid $+\square \rightarrow \square+\square$

9 Fig. 9.1 shows a section through a small blood vessel.

Fig. 9.1
(a) Cell \mathbf{A} is a red blood cell.
(i) Outline two ways in which this cell differs from a liver cell.

1
2
(ii) Describe the function of a red blood cell.
\qquad
\qquad
\qquad
\qquad
(b) Describe the function of cell B.
\qquad
\qquad
\qquad
(c) Complete the sentences about the functions of blood plasma, using words from You may use each word once, more than once, or not at all.

adrenaline	enzymes	insoluble	small intestine
soluble	stomach	starch	vitamins

Blood plasma transports \qquad nutrients such as sugars.

These nutrients enter the blood in the \qquad .

Blood plasma also transports hormones such as . [3]
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

