

COMBINED SCIENCE

Paper 2 (Core)

October/November 2013

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

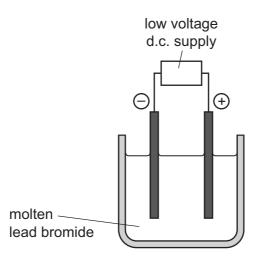
Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 23 printed pages and 1 blank page.


[Turn over

		We www.xt	rapapers.com
		2	
1		chloride is obtained from underground deposits in the Earth's crust of s such as sea water.	Camp For iner's
	(a) (i)	Explain why the Earth's crust contains the compound sodium chloride and not uncombined elements, sodium and chlorine.	For iner's the
			 [1]
	(ii)	State one difference between a compound and an element.	
			[1]
	(iii)	Describe how crystals of sodium chloride could be obtained from a salt solution.	
			[2]
	(b) The	e chemical formula of the compound calcium fluoride is CaF_2 .	
	Exp	lain the meaning of the numbers in this formula.	
	·····		

PA CAMBRIDGE

Www.papaCambridge.com (c) Fig. 1.1 shows apparatus used to separate the element lead from the compound bromide.

- (i) Name the process shown in Fig. 1.1.
- [1] (ii) Explain why an orange-coloured gas is observed rising from the molten lead bromide during the process.

[2]

[Turn over

PA CAMBRIDGE

© UCLES 2013

2 Fig. 2.1 shows the inside of a refrigerator.

Wan, Daba Cambridge.com The temperature inside the freezing compartment is -20 °C and the temperature in the reof the refrigerator is +5 °C.

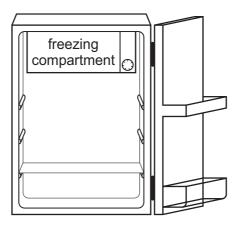


Fig. 2.1

(a) The air in the refrigerator is cooled by convection.

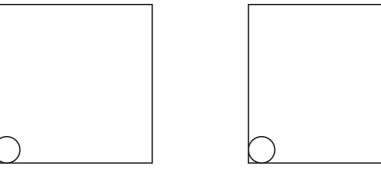
Draw one arrow on Fig. 2.1 to show the movement of the air cooled by the freezing compartment. [1]

(b) The volume of air in the refrigerator is $0.15 \, \text{m}^3$.

The density of air is 1.26 kg/m^3 .

Calculate the mass of air in the refrigerator.

State the formula that you use and show your working.


formula

working

[2] kg

(c) (i) Complete the diagrams to show the arrangement of water molecules in so and in liquid water.

www.papacambridge.com One molecule has been drawn for you in each box. Each diagram should contain at least twelve water molecules.

solid ice

liquid water

[2]

(ii) Each sentence describes either a solid, a liquid or a gas.

In the right hand column write the letter S for solid, L for liquid or G for gas to match the description.

description	S, L or G
It cannot flow.	
It cannot transfer heat by convection.	
It contains particles which are widely separated.	
It expands the most when heated.	
It fills a closed container.	
It has a fixed volume but not a fixed shape.	

[2]

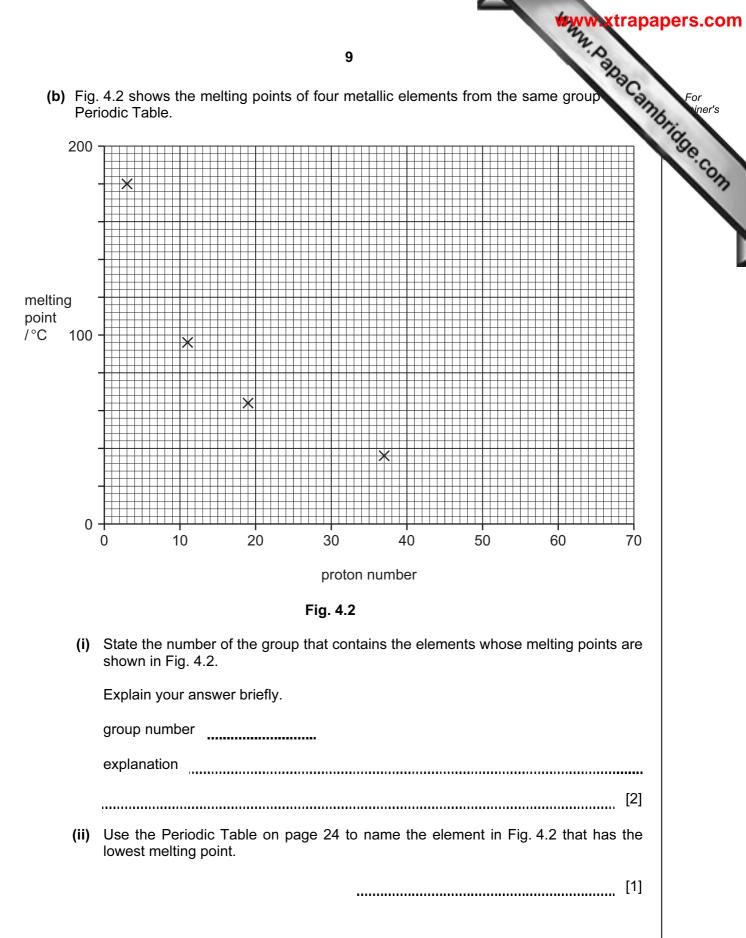
[Turn over

www.papacambridge.com 6 3 The concentration of glucose in the blood does not normally vary much. The has adrenaline causes blood glucose concentration to increase. (a) (i) Define the term hormone. [2] (ii) State one effect of adrenaline on the body, other than increasing the concentration of glucose in the blood.[1] (b) Researchers investigated how adding fibre to foods affected the concentration of glucose in the blood after eating. Fig. 3.1 shows the results that they obtained for two different types of cornflakes. Cornflakes contain a lot of starch. 8 cornflakes with 6 no added fibre blood glucose concentration/ 4 arbitrary units cornflakes with added fibre 2 0 20 40 60 80 100 C 120 time/minutes cornflakes eaten

Fig. 3.1

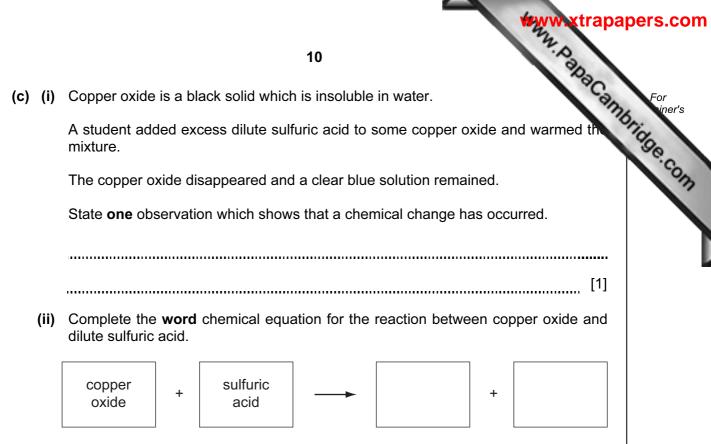
Use the information in Fig	j. 3.1 to help you to ar	nswer the following questions.
----------------------------	--------------------------	--------------------------------

(i) Describe how the blood glucose concentration changed after eating cornflake with no added fibre.


Www.papaCambridge.com [3] (ii) Describe how adding fibre to the cornflakes affected the changes in blood glucose concentration after eating. [3] (c) Outline **one** other way in which fibre in the diet affects health.[1]

[Turn over

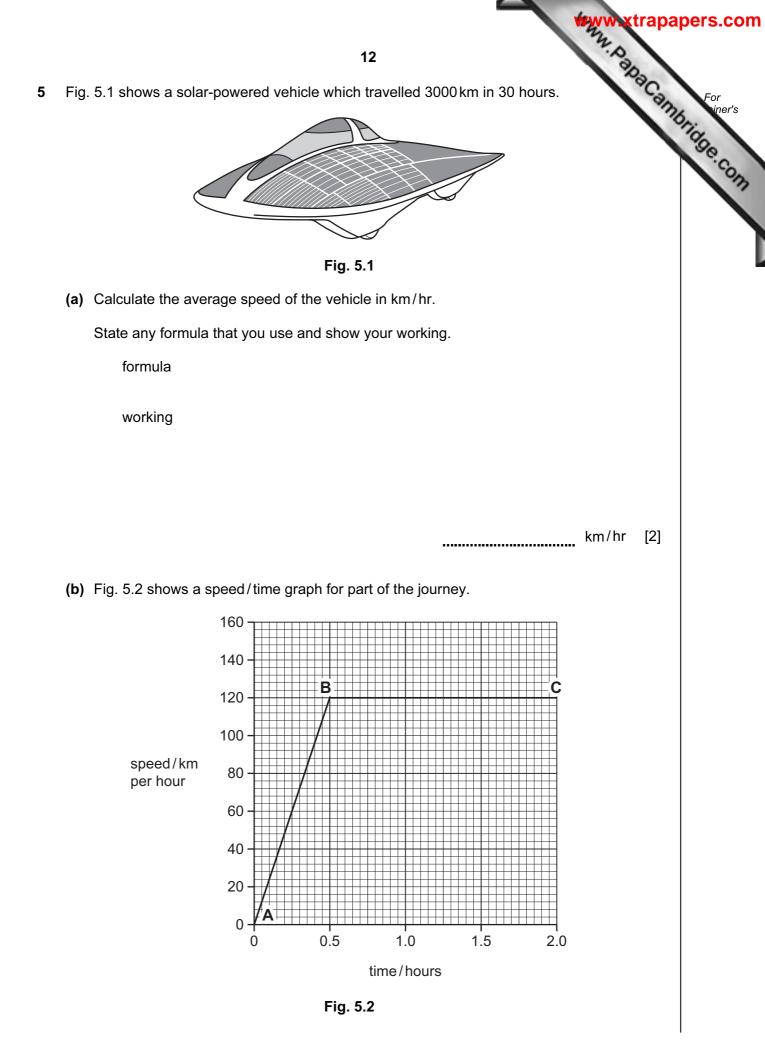
Www.papaCambridge.com 8 Fig. 4.1 shows a period in the Periodic Table. Four elements are represented by 4 which are not their usual chemical symbols. 2 3 5 7 0 group 1 4 6 number W Х Y Ζ Fig. 4.1 (a) (i) State and explain which of the elements, chosen from W, X, Y and Z, are poor conductors of electricity. element(s) explanation (ii) One of the elements shown in Fig. 4.1 is not expected to form a compound with any of the others. State and explain which one of the elements this is.


element	
explanation	
	[2]

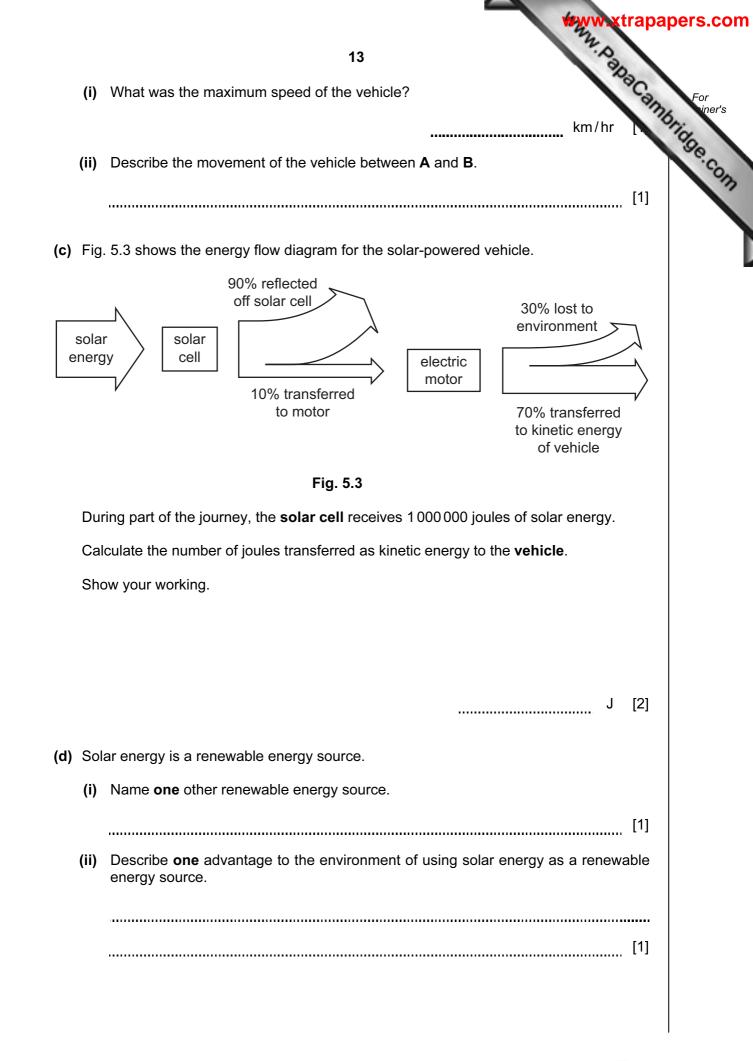
© UCLES 2013

[Turn over

[2]



Please turn over for Question 5.


© UCLES 2013

[Turn over

© UCLES 2013

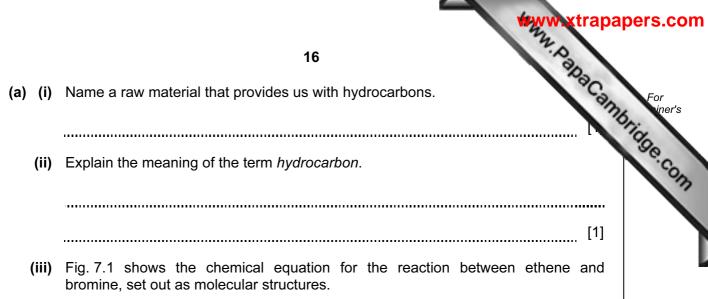

[Turn over

Fig	14 . 6.1 shows a section through the heart. pulmonary artery pulmonary vein	For
	pulmonary artery pulmonary vein A B C C C C C C C C C C C C C	Ibridge.c
(a)	Fig. 6.1 Name the parts labelled A and B .	
	Α	
	B[2]	
(b)	The walls of the heart are made of muscle.	
	Explain how this muscle pushes blood out of the heart.	
	Explain now this muscle pushes blood out of the heart.	
(c)	[2]	
(c)	[2] Suggest why the muscle of the upper chambers of the heart is thinner than the muscle	
(c)	[2] Suggest why the muscle of the upper chambers of the heart is thinner than the muscle of the lower chambers of the heart.	

© UCLES 2013

	www.xtra	apapers.com
	15	
(d)	When the heart is beating more quickly than usual, it uses a lot of oxygen.	For For
	Suggest why the heart uses more oxygen when it is beating quickly.	ibride is a
		Secon
	[2]

[Turn over

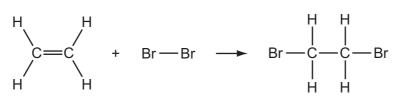
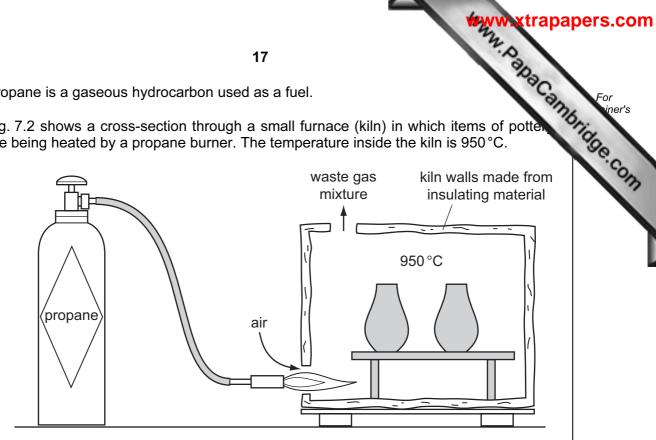


Fig. 7.1

Rewrite the information in Fig. 7.1 using chemical formulae. One chemical formula has been given.



[2]

7

(b) Propane is a gaseous hydrocarbon used as a fuel.

Fig. 7.2 shows a cross-section through a small furnace (kiln) in which items of potte are being heated by a propane burner. The temperature inside the kiln is 950 °C.

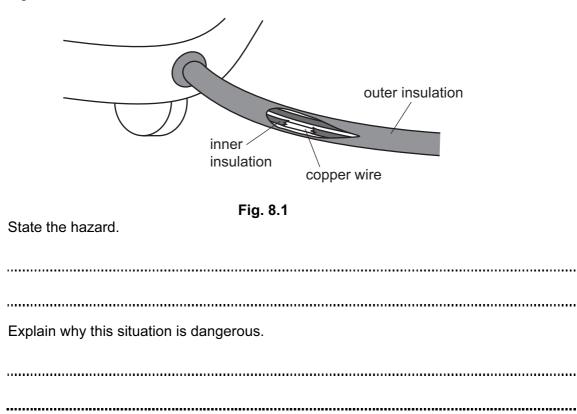
(i) State which information from Fig. 7.2 shows that the combustion of propane is exothermic.

Explain your answer.

[2] (ii) Suggest two compounds that have a higher concentration in the waste gas mixture than in the air drawn in at the bottom of the kiln. Explain your answer briefly. 1 2 explanation [3]

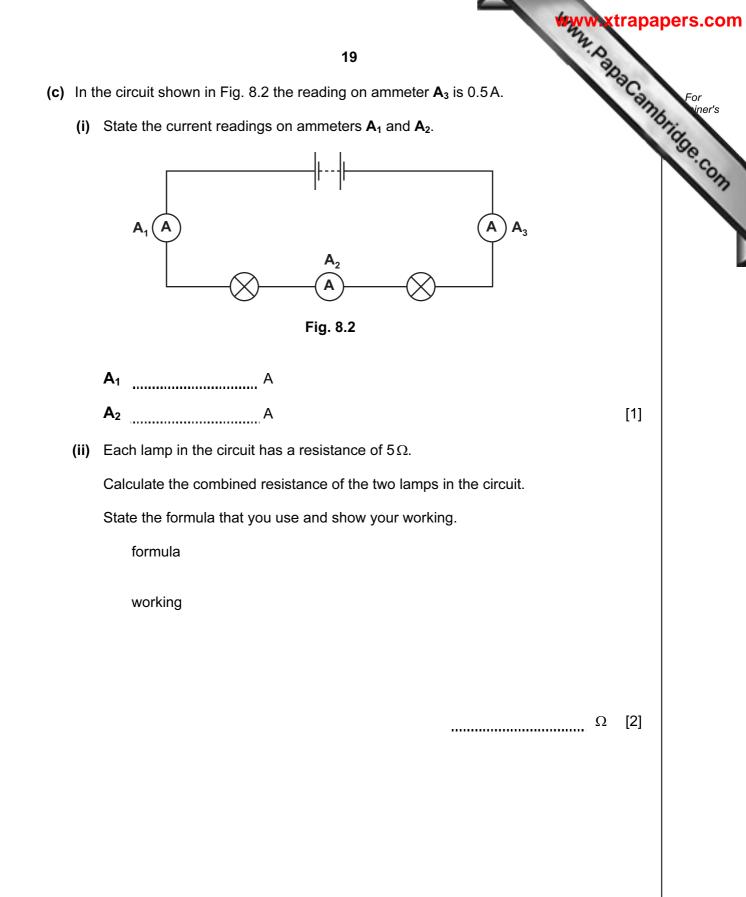
[Turn over

18

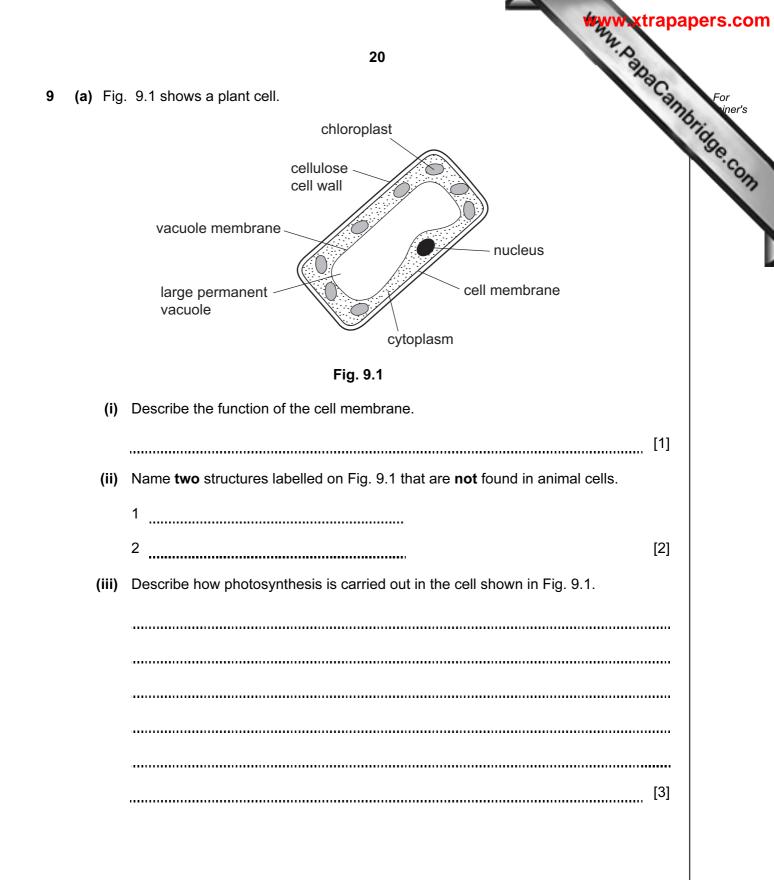

www.papacambridge.com (a) Complete Table 8.1 below by drawing the circuit symbol for each electrical comp 8

name of component	circuit symbol
open switch	
resistor	
voltmeter	
fuse	

Table 8.1

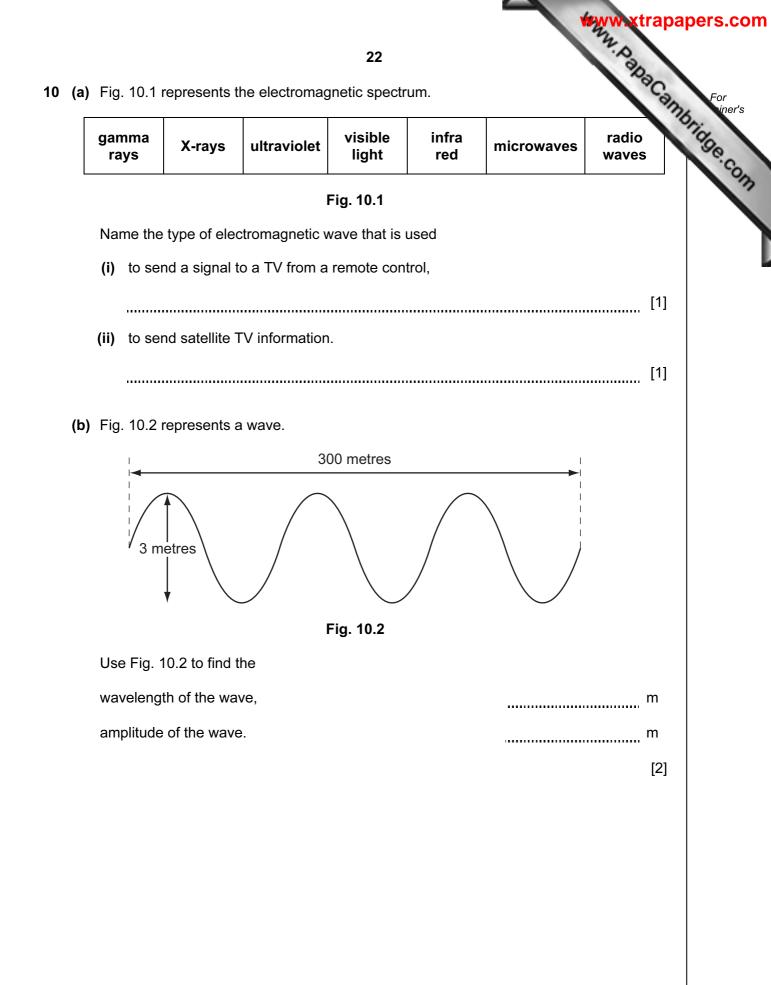

[2]

(b) Fig. 8.1 shows an electrical hazard.



[2]

© UCLES 2013


[Turn over

	www.xtrapapers.c	com
	21	
(b)	21 About one tenth of the Earth's surface is covered by forests in which photosynthesis takes place. List three ways in which extensive deforestation could harm the environment.	er's
	List three ways in which extensive deforestation could harm the environment.	
	1	OM
	2	
		_
	3	
	[3]	

© UCLES 2013

[Turn over

BLANK PAGE

23

	T				2	4	[]			ANN.X	aba Cambr
	0	4 Helium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe 54	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	ambr
	IN		Pluorine 9	35.5 C 1 17 Chlorine	80 Br Bromine 35	127 T Iodine 53	At Astatine 85		173 Yb ^{Ytterbium} 70	Nobelium 102	
	N		16 Oxygen 8	32 S Sulfur 16	79 Selenium 34	128 Te ^{Tellurium} 52	Po Polonium 84		169 Tm Thulium	Mendelevium 101	
	>		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth		167 Er 68	Fermium 100	
	≥		6 Carbon C 12	28 Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead		165 Ho Holmium 67	Einsteinium 99	(r.t.p.).
	≡		5 Boron 1	27 A1 Auminium 13	70 Ga 31	115 In Indium	204 T 1 1 ^{Thallium}		162 Dysprosium 66	Cf Californium 98	oressure
			L		65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury}		159 Tb ^{Terbium} 65	BK Berkelium 97	ture and _f
					64 Cu Copper 29	108 Ag Siver 47	197 Au Gold 79		157 Gd Gadolinium 64	66 Currium	tempera
dn					59 Nickel 28	106 Pd ^{Palladium} 46	195 Pt Platinum 78		152 Eu Europium 63	Americium 95	l ³ at room
Group					59 CO 27	103 Rh Rhodium 45	192 Ir 1ridium		150 Sm Samarium 62	Pu Plutonium 94	is 24 dm
	-	1 Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	of any gas
]		55 Man Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nad Neodymium 60	238 Uranium 92	ne mole c
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr 59	Protactinium 91	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					51 V Vanadium 23	93 Nb Niobium	181 Ta ^{Tantalum} 73		140 Ce ^{Cerium}	232 Tho 90	The vo
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			mass number	
					45 SC Scandium 21	89 Vttrium 39	139 La Lanthanum 57 *	227 Actinium 89 †	series tries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Be Beryllium	24 Mg ^{Magnesium} 12	40 Ca Calcium 20	88 Srontium 38	137 Ba Barium 56	226 Rad 88	*58-71 Lanthanoid series 190-103 Actinoid series	a a a a b a a a a a a a a a a a a a a a	
	_		7 Lithium 3	23 Na Sodium	39 Fotassium 19	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 87	8-71 La 0-103 A	د ه ۲	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

24