CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER
\square

COMBINED SCIENCE

0653/23
Paper 2 (Core)
October/November 2013
1 hour 15 minutes
Candidates answer on the Question Paper.
No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

1 Fig. 1.1 shows a root hair cell.

Fig. 1.1
(a) Use the letters \mathbf{A}, \mathbf{B} and \mathbf{C} to label these parts of the root hair cell in Fig. 1.1.

A the cell membrane
B the part that contains chromosomes
C a structure that is not present in animal cells
(b) Name two substances that are absorbed by root hair cells.

1 \qquad
2 \qquad
(c) Fig. 1.2 shows part of a plant stem from which the outer layer, including the has been removed.

Fig. 1.2
(i) State the function of phloem.
\qquad
\qquad
\qquad
(ii) Suggest why this treatment would cause the roots of the plant to die.
\qquad
\qquad
\qquad
\qquad

2 (a) Table 2.1 shows information about some chemical elements and their position Periodic Table.

Table 2.1

element	group number in the Periodic Table
oxygen	6
calcium	2
lithium	1
sulfur	6
fluorine	7

(i) State the noble (inert) gas that is in the same period of the Periodic Table as sulfur.
(ii) Select two elements from Table 2.1 whose atoms form ionic chemical bonds with each other and explain your answer.
and \qquad
explanation \qquad
\qquad
(b) Fig. 2.1 shows a diagram of an atom.

Fig. 2.1
(i) Name structure A in Fig 2.1. ..
(ii) State the proton number of the atom in Fig. 2.1.

Explain your answer briefly.
proton number \qquad explanation \qquad

3 Fig. 3.1 shows a circuit used to measure the current passing through a resistor wir voltage across it is changed.

Fig. 3.1
(a) Describe the purpose of component \mathbf{Z} in the circuit.
\qquad
(b) The meters shown in the circuit give readings of 0.6 A and 8.0 V .

State which meter, \mathbf{X} or \mathbf{Y}, gives the reading of 0.6 A .
Explain your answer.
meter \qquad
explanation \qquad
\qquad
(c) Use the formula
resistance = potential difference/current
to calculate the resistance of the resistor.
State the units for your answer.
working

4 Soya beans are an important crop in Brazil.
(a) Table 4.1 contains information about the tests used and results obtained when testir soya beans for protein, fat and starch.

Table 4.1

nutrient tested for	reagent	result	conclusion
protein		purple	
starch			contains starch
fat		milky white	

Complete the table.
(b) Explain why protein is an important part of a balanced diet.
\qquad
\qquad
(c) When a person eats soya beans, the beans are chewed in the mouth.

Explain why this makes it easier for enzymes in the digestive system to digest the beans.
\qquad
\qquad
(d) Large areas of rainforest have been cleared in Brazil, to provide more land for growing soya beans.

State two ways in which cutting down the rainforest can harm the environment.
1
\qquad
2 \qquad

5 (a) A student placed four equally-sized pieces of different metals into colourless contained in four test-tubes $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.

Fig. 5.1 shows what the student observed.

Fig. 5.1
(i) Suggest which of the test-tubes in Fig. 5.1 contained water to which a piece of iron was added.

Explain your answer.
test-tube
explanation \qquad
\qquad
\qquad
\qquad
(ii) The colourless liquid in test-tube \mathbf{R} was dilute hydrochloric acid.

Suggest the name of the metal that was added to test-tube \mathbf{R} and name the gas that was produced.
metal \qquad
gas
(iii) Test-tube \mathbf{P} contained the same concentration of dilute hydrochloric acia same temperature as test-tube \mathbf{R}.

Suggest a reason why gas was produced more slowly in test-tube \mathbf{P} than in test-tube \mathbf{R}.
\qquad
(b) Gasoline and diesel are mixtures of liquid hydrocarbons obtained from petroleum by the process of fractional distillation.
(i) State one difference in the properties of the hydrocarbons in gasoline that allows them to be separated by fractional distillation.
\qquad
\qquad
(ii) State the main use of gasoline and explain, in terms of its chemical properties, why it is suitable for this use.
use \qquad explanation \qquad
(c) Natural gas contains mainly methane.
(i) Complete the diagram of the structure of one molecule of methane.
-C
(ii) Complete the word chemical equation for the complete combustion of methane.

6 (a) Fig. 6.1 gives information about the uses of different types of electromagnetic and their effects on living tissue.

Draw lines to link each electromagnetic wave with its effect on living tissue and its use. One has been completed as an example.

uses	type of radiation		effects on tissue
screening luggage	X-rays	activates sensitive cells in retina kills cancerous cells	
security marking	microwave		
satellite communication	ultra violet		heats water in tissues
seeing	visible light		causes tanning of skin

Fig. 6.1
(b) Electromagnetic waves are transverse waves. Water waves are also transverse.

Draw a diagram of a transverse wave on the axes below. Label the amplitude and one wavelength on your diagram.

(c) Fig. 6.2 shows a person looking into a mirror and seeing an image.

Fig. 6.2
(i) Write the letter \mathbf{X} on Fig. 6.2 to show the position of the image of the person's nose.
(ii) Select three words or phrases from the list that describe the image correctly.
larger than object
smaller than object
real
upright upside down virtual
\qquad
\qquad

7 Fig. 7.1 shows the contents of the human thorax (chest).

\qquad

Fig. 7.1
(a) On Fig. 7.1, name structures \mathbf{A} and \mathbf{B}.
(b) Oxygen diffuses into the blood from the alveoli inside the lungs. Carbon dioxide diffuses into the alveoli from the blood.
(i) Define the term diffusion.
\qquad
\qquad
\qquad
(ii) Name the component of blood that transports dissolved carbon dioxide.
(iii) When a person is doing vigorous exercise, the concentration of carbon dioxide in the blood increases.

Explain why this happens.
\qquad
\qquad
\qquad
(iv) Suggest how this will affect the rate of diffusion of carbon dioxide from the the alveoli.

Explain your answer.
effect on rate of diffusion \qquad explanation \qquad

8 (a) Fig. 8.1 shows apparatus a student used to investigate the reaction between nitric acid and excess calcium carbonate.

Fig. 8.1
(i) Describe how the student could show that the reaction in Fig. 8.1 produced carbon dioxide. You may complete the diagram to help you answer this question.
\qquad
\qquad
\qquad
(ii) At the end of the reaction the test-tube in Fig. 8.1 contains a solution of the compound calcium nitrate.

State the general name for compounds like calcium nitrate which are produced when an acid reacts with a metal carbonate.
(iii) The chemical formula of calcium nitrate is $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.

State the total number of atoms and the number of different elements that are shown combined together in this formula.
total number of atoms
number of different elements
(b) The student then carried out an investigation into the way that the rate of the rea
(a) changed when he varied the concentration of the nitric acid.

Fig. 8.2 shows the apparatus the student used to measure the rate of reaction.

Fig. 8.2
The student measured the rate of reaction by finding how long it took for the gas syringe to fill with gas.
(i) After he had completed several measurements, the student wrote the following correct conclusion in his notebook.

	Conclusion
	The higher the pH of the dilute nitric acid
	the longer it took for the gas syringe to
	fill with gas.

Explain this conclusion briefly.
\qquad
\qquad
\qquad
(ii) State two other variables that can affect the rate of reaction between dilute nitric acid and calcium carbonate.

1 \qquad
2

9 Fig. 9.1 shows a solar- powered golf cart used to carry golfers around a golf course.

Fig. 9.1
(a) As the cart moves around the course, the motion of the cart is measured.

Fig. 9.2 shows a distance/time graph for a small part of the journey lasting 60 seconds.

Fig. 9.2
(i) Write down the total distance covered in 60 s .
m [1]
(ii) Describe the motion of the cart between \mathbf{D} and \mathbf{E}.
\qquad
\qquad
(iii) During another part of the journey, the cart is accelerating.

State whether the forces acting on the cart are balanced or unbalanced.
Explain your answer.
\qquad
\qquad
(b) The cart is powered by solar cells on its roof. The solar cells produce electrical energy used to charge the rechargeable batteries in the cart.

Name one other renewable energy resource that could produce electrical energy.
(c) The golfer hits a golf ball with his club. The ball flies through the air.
(i) State the form of energy given to the golf ball when the ball is hit.
(ii) State the form of energy gained by the golf ball as it rises into the air after being hit.
(d) The mass of a golf ball is 45 g . The volume of a golf ball is $36 \mathrm{~cm}^{3}$.

Calculate the density of the golf ball.
State the formula that you use and show your working.
formula
working

$$
\mathrm{g} / \mathrm{cm}^{3}
$$

(e) The head of the golf club is made of solid metal. The air the golf ball is tra through is a gas.

Complete Fig. 9.3 below to show the arrangement of particles in a gas. The diagram for a solid has been done for you.

solid

gas

Fig. 9.3

$$
\begin{aligned}
& \text { DATA SHEET } \\
& \text { The Periodic Table of the Elements }
\end{aligned}
$$

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

$\stackrel{\rightharpoonup}{\text { ® }}$

