

MARK SCHEME for the May/June 2013 series

0442 CO-ORDINATED SCIENCES (DOUBLE AWARD) (US)

0442/33

Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

B B CAMBRIDGE

PA CAMBRIDGE

WWW. PapaCambridge.com

wxtrapapers.com

			www.xtrapapers.com
	Page 2	Mark Scheme	Syllabus 7.0 r
		IGCSE – May/June 2013	0442
1	(a) (i)	A labelled between 0s and 20s;	Canne
	(ii)	working on graph/calculation of area under graph ; 280 m ;	Idge com
	(b) (i)	energy input (to panel) from sun/energy from sun (to pane	el), varies ; [1]
	(ii)	6 hours (as graph worked) ;	[1]
	(iii)	efficiency = (useful) (energy) output/(energy) input ; energy input = 2000/0.2 = 10000 J/s ;	[2]
	(iv)	(kinetic energy =) ½ mv² ; = ½ × 750 × 7 × 7 = 18375 J ;	[2]
	(c) (i)	voltmeter in parallel with photocell and correct symbol ;	[1]
	(ii)	power = voltage × current ; = 2.5 × 0.2 = 0.5 W ;	[2]
			[Total: 12]
2	(a) <u>frac</u>	tional distillation ;	[1]
	(b) (i)	C_8H_{18} ; total number of each type of atom must be same on both s	sides of equation ; [2]
	(ii)	double bond shown ;	

[2]

(max 1 mark if symbols missing or incorrect)

(c) (i) 480 ÷ 24000 ; = 0.02 ;

[2]

			www.xtrapapers.com
	Page 3	Mark Scheme IGCSE – May/June 2013	Syllabus 0442
	(ii)	number of moles of ethene used = $0.02 \div 2 = 0.01$; M _r ethene = $(12 \times 2) + (1 \times 4) = 28$; mass of 0.01 moles ethene = $28 \times 0.01 = 0.28 \text{ g}$;	[Total: 10]
3	(a) (i)	chemical (energy); (accept: potential)	[1]
	(ii)	1 (%) ;	[1]
	(iii)	respiration ; as heat ; movement/kinetic ; not all organisms eaten/not all parts of organisms eaten not all food digested/some lost in faeces ;	n ; [max 2]
	(b)	less photosynthesis (as fewer trees) ; so less carbon dioxide removed/used ; trees burned ; producing carbon dioxide ; more carbon dioxide in atmosphere contributes to gra heat ;	eenhouse effect/traps [max 3] [Total: 7]
4	(a) (i)	$\begin{array}{rcl} Mg & + & 2HCl & \rightarrow & MgCl_2 & + & H_2 \ ;;; \\ (LHS \ ; \ RHS \ ; \ and \ balanced \ ;) \end{array}$	[3]
	(ii)	heat energy has been transferred/released into the mix (heat released by) exothermic reaction ; chemical energy transferred into heat energy ; products have lower chemical energy content than reac	xture ; ctants ; [max 2]
	(b) (i)	2.5 ;	[1]
	(ii)	the higher the temperature the higher the rate ; if temperature increases then speed/KE of molecules i reactions occur when molecules collide ; if speed increases collision frequency increases ; and collision energy increases ; which leads to greater chance of reaction ;	increases ; [max 3]
			[Total: 9]
5	(a) (i)	3×10 ⁵ (km/s) ;	[1]
	(ii)	infra-red ;	[1]
	(iii)	wavelength / frequency ;	[1]

				www.xtrapapers.c	om
Pa	age 4	Mark Scheme	Svllabus		
	J	IGCSE – May/June 2013	0442	20	
(b)	bot alp ion car the (<i>all</i>	a alpha radiation and beta radiation pass easily through the na radiation damages cells in a very localised part of the b sation does not always kill cells – sometimes it causes the cer occurs when a large number of cells are killed dose of radiation received depends on the length of exposi- five boxes correct = 2 marks, four boxes correct = 1 mark)	e body ody em to mutate sure) ;;	e 2 2 2 2 2 2 2 2 2 2	T
(c)	hal [:] woi	-life = 90 (minutes) ; king ;		[2]	
(d)	(i)	polonium –210 (no mark) largest/longest half-life ;		[1]	
	(11)	alpha is most ionising/both emit alpha ;		[1]	
(e)	use B to exp A a B n but	(s) inject into a person as a medical tracer ; <i>lanation</i> nd C need long half-lives to work ; eeds short half-life so that it does not remain in body/owtt long enough so that it can be monitored ;	te;	[max 3] [Total: 12]	
6 (a)	arro arro arro arro (<i>all</i>	w on A pointing downwards w on B pointing downwards w on C pointing upwards w on D pointing upwards four correct for two marks, two or three correct for one ma	nrk) ;;	[2]	
(b)	(i)	urea/carbon dioxide ;		[1]	
	(ii)	water ; one from – amino acid/glucose/fatty acid/glycerol/nam named vitamin ; antibodies ;	ned relevant	t element/ [max 2]	
(c)	(i)	by red blood cells ; by haemoglobin ; combined with haemoglobin/as oxyhaemoglobin ;		[max 2]	

age s	5		Mark Schem	ne		Syllabus	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V
		IGCS	6E – May/Jun	ne 2013		0442	100	
(ii)	reference shorter d more sur greater, r idea that comparat smaller th	to diffusion ; stance to trav ace area (the ate of more, b this maintains ive use of fig an in placent	vel (therefore erefore more blood flow (so s diffusion gra gures, e.g. di ta ;	less time ta can move a o oxygen tak adient ; stance acro	ken (for di cross at or en away fa ss surface	ffusion)) ; nce) ; aster) ; e in lungs is	s 7 times	embrida [max 4]
							[]0	otal: 11]
(a) cop soc (i.e	oper unrea lium and n . 1 genera	ctive/stable e agnesium re <i>reactivity ma</i>	enough to exi act easily wit ark and 1 mar	st as metal h, non-meta rk for releva	ls e.g. oxy nt extra de	gen ; tail)		[2]
(b) (i)	alloy ;							[1]
(ii)	<i>harder</i> tin atoms making i more ene	disrupt layer more difficu rgy required	s of copper a Ilt_for_layers to make laye	toms ; to move o rs slip ;	ver each	other/which	n means	[2]
(iii)	<i>mixture</i> proportio OR <i>compoun</i> <u>atoms</u> of some pro	ns of tin and o <i>d</i> different elen perties of bro	copper can va nents are bon onze are diffe	ary / no fixed nded ; rent from eit	chemical her tin or o	formula ; copper ;		[max 1]
(c) (i)	spoon / el so attract copper io copper io copper a	ectrode S is a s positive cop ns gain electi ns gain two e oms bond tog	a cathode/ne oper ions ; rons ; electrons/are gether/stick t	egatively cha discharged to steel spoo	rged ; / converted on ;	d into coppe	er atoms ;	[max 4]
(ii)	oxygen/o	arbon dioxid	e/carbon mo	noxide ;				[1]
(iv)	weigh the decrease OR use micr	e electrode be in mass prov ometer to fin	efore and afte vides the requ	er the proces uired eviden electrode <u>th</u>	s ; ce ; <u>ickness</u> b	efore and	after the	
	decrease	in thickness	provides the	required ev	dence;			[max 2]

Pa	ae 6	Mark Scheme	Syllabus	r
I u	900	IGCSE – May/June 2013	0442	2Da
(a)	(i)	(energy =) power × time ; 1100 × 40 × 60 ; = 2 640 000 (J) ;		Cambrid
	(ii)	electricity could be produced by burning fossil fuels/name (fossil) fuels when burned/power stations release CO ₂ ; reduced demand for (fossil) fuels/electricity reduces amo	ed example ; ount of CO ₂ released	l; [max 3]
(b)	(i)	(R =) V/I ; R = 220/3 = 73 Ω ;		[2
	(ii)	charge = current × time ; = $3 \times 12 \times 60 = 2160 \text{ C}$;		[2
(c)	(i)	liquid particles touching and similar size ; gas particles not touching ; random arrangement for both ;		[3
	(ii)	fast <u>er</u> moving molecules ; can do more work against attractive forces/can break be owtte ; break free/separate turn into gas/leave liquid ; energy/heat (from surroundings) used for this ;	onds between them	/ [max 3
				[Total: 15]
(a)	(i)	from the air ; by diffusion ; through stomata ;		[3
	(ii)	from the soil ; absorbed by root hairs ; by osmosis (into roots/xylem) ; up xylem to leaves ; pulled up by transpiration ;		[max 3]
(b)	(i)	breakdown of large molecules; so that they can be absorbed / become soluble ;		[2]
	(ii)	enzymes ; proteases ; trypsin / pepsin ;		[max 2

Page	7	Mark Scheme Svlla	abus & r
		IGCSE – May/June 2013 04	42 23
(c) (i) ;	as a control/to make sure the only variable was the substance u	sed; [1] Annot
(ii) 1	hey moved away from the side containing the solution from the p	pitcher ;
(iii) 	pitchers have slippery rim (so insects fall in) ; pitchers have downward-pointing spines (so insects can't crawl c	out) ;
	l	avp ;	[max 3]
			[Total: 15]
(a) (i) <u> </u> 	max 2 from either part: reduce acidity/increase pH/neutralise acids ; calcium carbonate reacts with/neutralises acids ; releases nutrients from soil ;	
	i	ncrease plant nutrient levels/fertilises ; potassium compounds are essential for healthy plant growth/inc neutralises acids (if not credited above) ;	reases yield ; [max 3]
(ii)	potassium ion is K^* / charges must balance ; so carbonate is CO_3^{2-} ;	[2]
(b) (i) i	ron ;	[1]
(ii) i	nitrogen and hydrogen too unreactive/react too slowly (without it catalyst speeds up the reaction/allows the reaction to occur ;	t) ; [max 1]
(iii) I	nitric acid ;	[1]
			[Total: 8]
(a) cu pe ra O up	urve eak ate : P R p ai	e goes up and then down again ; between 30 and 45 °C ; zero (by 60 °C or sensible figure) ; nd down (including two straight lines) ;	
CC	orre	ect shape ending at zero ;	[max 3
(b) (i) :	skin / brain / hypothalamus ;	[1]
(ii) (1	contract/shiver ; elease heat ;	[2]
(iii) : 	sensor/receptor detects a change from normal/example/owtte ; orings about a response that returns factor towards normal/exar	; nple ; [2