CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

WWW. PapaCambridge.com MARK SCHEME for the October/November 2014 series

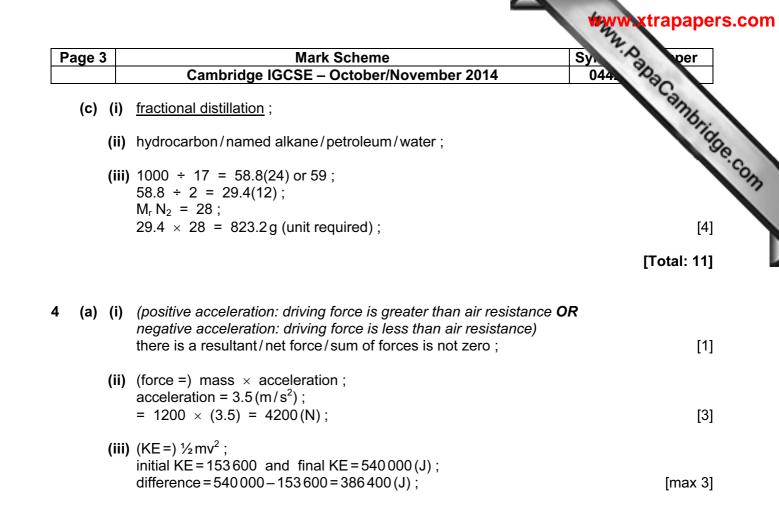
0442 CO-ORDINATED SCIENCES (US) (DOUBLE AWARD)

0442/33

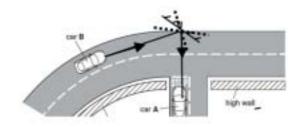
Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

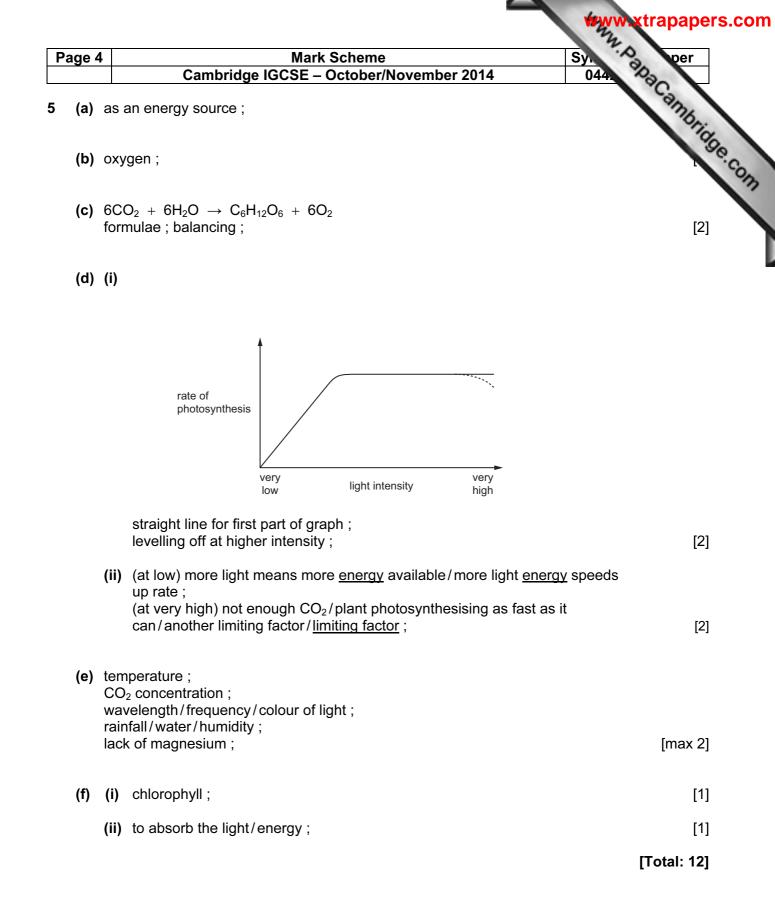
Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

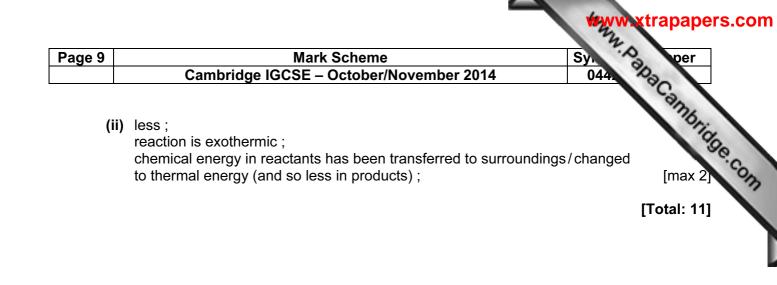

® IGCSE is the registered trademark of Cambridge International Examinations.

w.xtrapapers.com


Page	e 2		Mark Scheme Syn	per
			Cambridge IGCSE – October/November 2014 044	No.
(a	, ;	adaj surv	ation ; ptation ; rive ; ction ;	aba Cambrid
(k	b)		(in 1980) no (significant) difference ; (in 2010) higher in country A /ORA ;	[2]
	((ii)	mutation produces resistant variety ;	
			some bacteria more resistant than others/some bacteria are resistant ; antibiotics in (frequent) use ; resistant bacteria more likely to survive/natural selection/ORA ; and reproduce to pass on this resistance ;	[max 3]
		(iii)	more/incorrect antibiotic use in country A /ORA ;	[1]
				[Total: 10]
(8	a)		3000 (W) shown ; = $\frac{3000}{250} (= 12 \text{ A});$	[2]
		(ii)	(resistance =) $\frac{\text{voltage}}{\text{current}}$; $\frac{250}{12}$ = 20.8 or 21;	
			Ω ;	[3
(k	b)	(i)	(larger current so) wire moves (upwards) higher/quicker/with more force ;	[1]
			(current reversed so) wire moves downwards/direction reverses/force acts downwards ;	[1]
				[Total: 7]
(a	a)	(i)	1(%);	[1]
		(ii)	any noble gas ;	[1]
(k	b) ((i)	24 dm ³ ;	[1]
	(reference to the idea that 1 mole of <u>any</u> gas at room temperature and pressure has a volume of $24 \text{ dm}^3/1$ mole of any gas under same conditions	[1]
			occupies the same volume ;	[1
	((iii)	nitrogen has lower/different mass/lower density;	[1

(b) mirror drawn at suitable angle ;

	ray of light drawn from car B reflects off mirror to car A indicated by arrow ; angles between rays and mirror approximately correct ;	[3]
(c)	engine vibration causes air particles to vibrate ; energy/vibrations passed from particle to particle ; compressions and rarefactions ;	[max 2]
		[Total: 12]



			Mark Schem	ne	Sy.	A per
		Cambrid	ge IGCSE – Octobe	er/November 2014	04	44 1030
(a)						ambr
	ele	ement	physical state at 20 °C	colour	formula of molecules	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	ch	llorine	gas	(pale green)	C <i>l</i> ₂	
	bro	omine	(liquid)	orange / brown	Br ₂	
	ioc	dine	solid / crystals	dark grey / black	(I ₂)	
			1	I		
	(1 mark for e	each corre	ect column)			[3]
(b)	chlorine + s	odium io	dide → iodi <u>n</u> e + s	odium chlori <u>d</u> e ;		[1]
			ed / might die ; oorganisms would n	ot be killed ;		[2]
						[2]
	$2F_2 + 2H_2O$ formulae ; ba		+ 4HF			[2]
			+ 4HF			
(a)		alanced ;	+ 4HF			[2]
(a)	formulae ; ba V = testis ;	alanced ;	+ 4HF			[2] [Total: 8]
(a) (b) (c)	formulae ; ba V = testis ; W = ovum/	alanced ; egg ; sis ;	+ 4HF			[2] [Total: 8] [2]
(a) (b) (c) (d)	formulae ; ba V = testis ; W = ovum/ fertilisation ; at Y = mitos	alanced ; egg ; sis ; sis ;	+ 4HF			[2] [Total: 8] [2] [1]

	5	Mark Scheme Sy		
		Cambridge IGCSE – October/November 2014 044	Day	
(a)	(i)	68 (W) ;	ang.	
	(ii)	working for A OR B ; A = 25% and B = 3.75% ;	Daba Cambrid	
	(iii)	A is more efficient than B /less energy consumed ; valid environmental statement e.g. less fossil fuels burned/non-renewable resources used/less CO ₂ released ;	[2]	
(b)		etic ;	[2]	
(c)	(i)	time taken for half the atoms/nuclei to decay/time for radioactivity to fall to half ;	[1]	
	(ii)	β particles and γ wave ; β more ionising ; β less penetrating ; β has charge and γ has no charge ; β has mass and γ has no mass ;	[max 2] [Total: 10]	
(a)	(i)	with ethane no colour change/stays orange ; with ethene orange solution becomes colourless ;	[2]	
	(ii)	x is 4 ; y is 8 ; alkenes ;	[3]	
(b)	(i)	<u>polymerisation</u> ; <u>addition</u> (polymerisation) ;	[2]	
	(ii)	poly(ethene) ;	[1]	
	(iii)	carbon dioxide ;	[0]	
		water;	[2]	

age 7	Mark Scheme Sy	oer oer
	Cambridge IGCSE – October/November 2014	44 23
(a) (i)	<pre>X = pulmonary vein ; Y = right atrium ;</pre>	44 44 44 44 44 44 44 44 44 44 44 44 44
(ii	I	
	lungs other body tissues	
	correct arrow on P ; correct arrow on Q ;	[2]
(ii	blood flows twice through the heart (for each complete circuit); through lungs, then through body tissues/v.v.; idea of separate oxygenated and deoxygenated blood;	[max 2]
(iv	 blood has less far to travel/flows through fewer capillaries/organs ; right (ventricle of) heart has less muscle ; 	[max 1]
(b) (i)	artery ;	[1]
(ii	surge of blood/pressure into the vessel ; vessel wall stretches (and recoils) with each beat ;	[max 1]
(ii) more <u>blood</u> to <u>muscles</u> ; so more oxygen/glucose ; removes more CO ₂ ;	
	increased energy released ;	[max 2]

Page 8		Mark Scheme S	yh A per
		Cambridge IGCSE – October/November 2014	044 7030
l (a)	(i)	poor (heat) conductor/idea of heat not passing through handle ;	ant.
	(ii)	shiny/silver surface poor heat emitter ;	044 044 044
(b)	incı	<i>base of saucepan)</i> reased particle movement/vibration/kinetic energy ; ergy transferred by collision, vibration/energy, passed from particle to	
	wat	<i>water)</i> ter particles move further apart ; s dense water rises ;	[4]
(c)		essure =) force ;	
	= _3	$\frac{15}{300} = 0.05 (\text{N/cm}^2);$	[2]
(d)		=) $\frac{H}{m\theta}$ or $\frac{H}{m\Delta T}$; $\frac{3000}{5\times 30)}$;	
	``	200 (J/kg°C) ;	[3]
			[Total: 11]
2 (a)	trar trar	nsition metals have high density ; nsition metals (and compounds) can act as catalysts ; nsition metals (often) form coloured compounds ;	
		nsition metals have high melting/boiling points ; erence to variable oxidation states/valency ;	[max 3]
(b)	(i)	(26) same as proton number ;	[1]
	(ii)	3 ; same as Group number ; electrons arranged in 2,8,3 ;	[max 2]
(c)	(i)	aluminium <u>atom</u> /A <i>l</i> ; becomes a positive ion ;	
		(aluminium atoms) lose electrons (when they ionise)/electron loss is oxidation/electrons transferred to iron (ions)/oilrig explained ;	[max 3]

