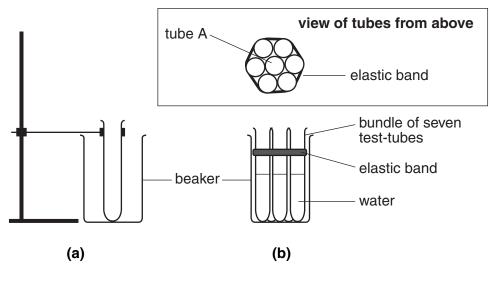
554/05 Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education 0654/05 **CO-ORDINATED SCIENCES** Paper 5 Practical Test October/November 2003 2 hours Candidates answer on the Question Paper. Additional Materials: As listed in Instructions to Supervisors **READ THESE INSTRUCTIONS FIRST** Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. Answer all questions. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. Chemistry practical notes for this paper are printed on page 12. For Examiner's Use If you have been given a label, look at the details. If any details are incorrect or 1 missing, please fill in your correct details in the space given at the top of this page. 2 Stick your personal label here, if 3 provided. Total

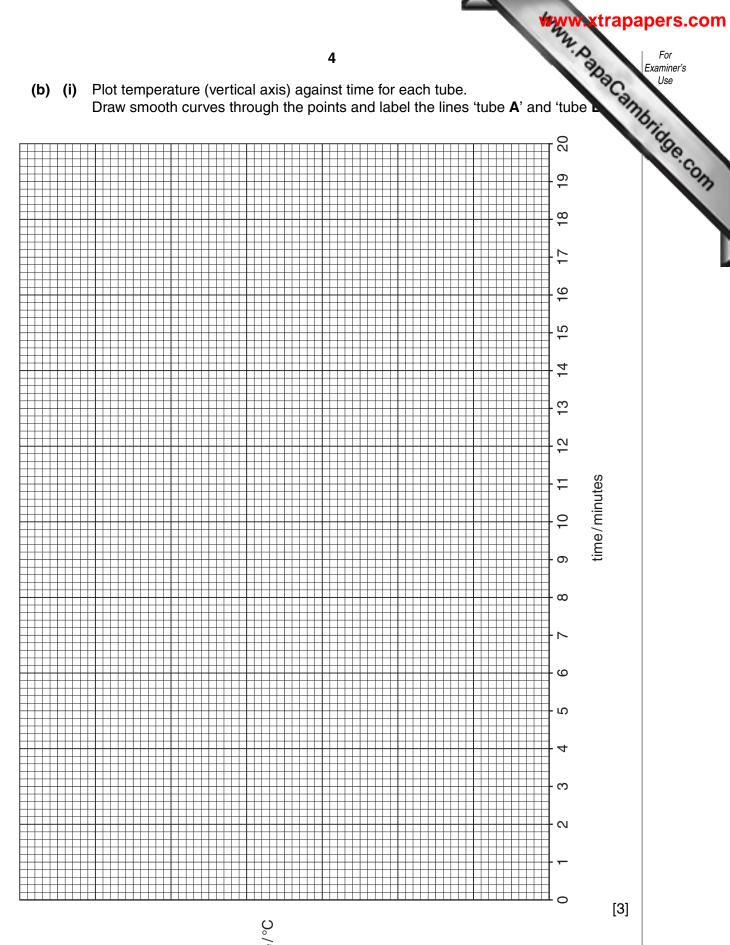
1 This question is about heat loss in animals. During cold weather some animal together (huddle) to keep warm.

Your experiment is to find how effective such huddling is.

Www.papacambridge.com You will use test-tubes of hot water to represent the animals. One tube, tube A, will be put in the middle of six others. Another tube, tube **B**, will be put by itself.

- Put eight test-tubes into a test-tube rack. You may need two racks.
- Label one test-tube 'A' and another one test-tube 'B'.
- Arrange a stand and clamp to hold tube **B** in the middle of an empty beaker (see Fig. • 1.1(a)).
- Now return tube **B** to the rack. Ask your supervisor to put hot water into one of your beakers. (The water will be at a temperature above 90 °C, be careful). This is your supply of hot water and is to be used to put water in the test-tubes.




Fig. 1.1

- Half-fill each test-tube with the hot water provided.
- Replace tube **B** in the clamp so that it is by itself in the beaker.
- Put seven of your test-tubes into a different empty beaker. Group them so that tube A is in the middle surrounded by the six remaining tubes. Hold them together with an elastic band. This is shown in Fig. 1.1(b).
- Put a thermometer into test-tubes **A** and **B**.

temperatures every	minute for ten minutes in the table,	Fig. 1.2.
time/minutes	temperature of tube A /°C	minutes), and then rect remperature of tube B /°C

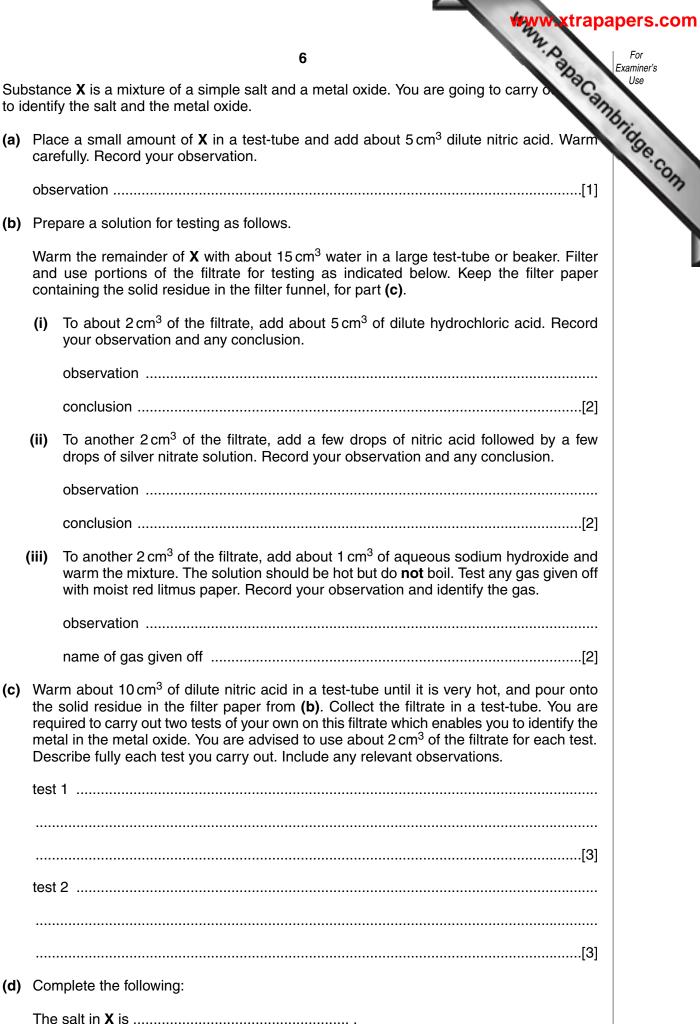

[3]

Fig. 1.2

temperature/°C

	www.xtra	apa
	5	
	(ii) Which test-tube, A or B , cooled down more slowly?	Can
(c)	5 (ii) Which test-tube, A or B, cooled down more slowly? Is huddling effective? Use your results and your knowledge of heat transfer to explayour answer.	in '
	[[3]
(d)	Assuming that all seven test-tubes in the bundle with tube A had the same startin temperature, suggest the temperature for one of the outer tubes after ten minute Explain your answer.	•
	suggested temperature after ten minutes°C	
	explanation	
	[[2]
(e)	Continue the lines for tube A and tube B on your graph to show how you would expert the readings to change over the next ten minutes.	ect [1]
(f)	Suggest two ways in which you could improve the accuracy of the experiment.	
		[2]

- You are going to show how the solubility of potassium nitrate varies with temperature 3
 - (a) The large test-tube contains 7.0 g of potassium nitrate and $5.0 \,\mathrm{cm^3}$ of water.
 - Clamp the tube in the stand. •
- For Examiner's Use erature er. Lower the tube into a beaker of water so that the level of the water in the beaker comes above the level of the water in the tube as shown in Fig. 3.1.
 - Heat the beaker of water, stirring the contents of the tube until all the potassium • nitrate has dissolved.
 - Remove the tube from the beaker of water. •
 - Allow the tube to cool, stirring gently all the time.
 - Small shiny crystals will appear. Note the temperature at which these crystals appear and record it in the table, Fig. 3.2.

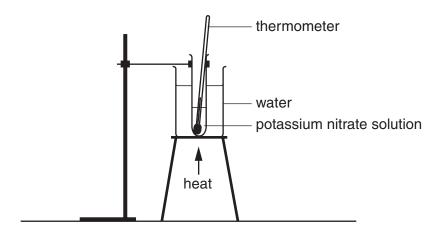


Fig. 3.1

- Www.papaCambridge.com (b) Use a burette or calibrated dropper to add 1.0 cm³ of water to the tube, making a 6.0 cm³. Replace the tube in the beaker of water. Warm the water again, stirring until all the solid has dissolved. Remove from the beak and note the temperature at which crystals appear. Record this temperature in the table, Fig. 3.2.
- (c) Repeat the procedure, adding $1.0 \,\mathrm{cm}^3$ of water each time to obtain two more readings. Record the temperatures in the table, Fig. 3.2.

mass of potassium nitrate/g	total vol water/cm ³	mass of potassium nitrate per 100 g of water/g	temperature at which crystals form/°C
7.0	4.0	175	78
7.0	5.0		
7.0	6.0		
7.0	7.0		
7.0	8.0		
7.0	12.0	58.3	38

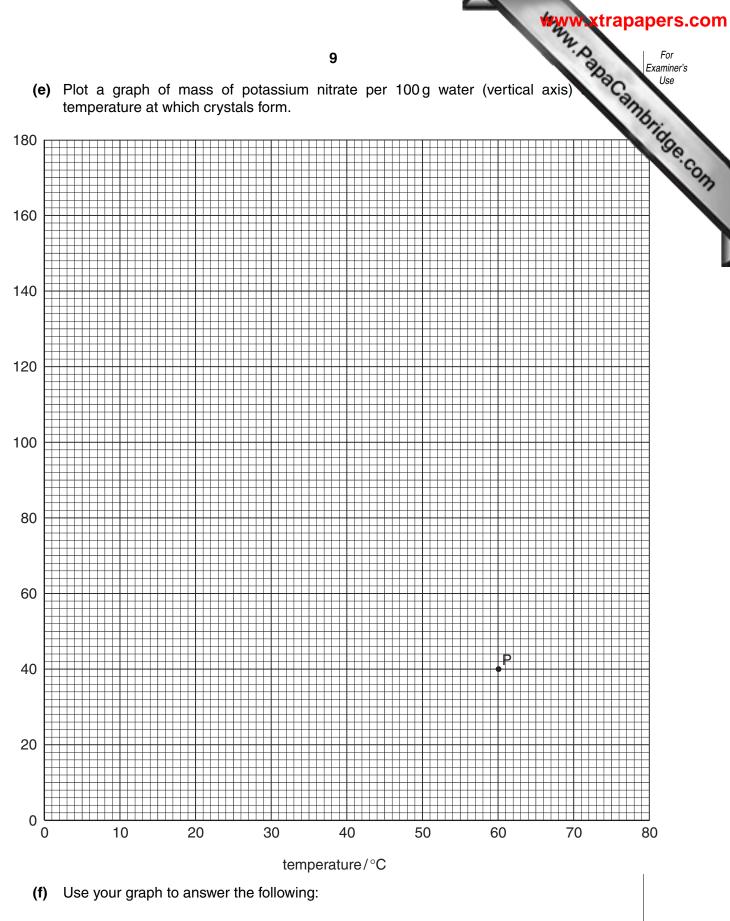

Two more sets of readings are provided for you.

Fig. 3.2

(d) Complete the table by calculating the mass of potassium nitrate in 100 g water in each line. Assume that 1 cm³ of water has a mass of 1 g. [1]

8

[5]

mass KNO₃ per 100g of water/g

(i) If a solution of potassium nitrate containing 100 g of the salt per 100 g water at 70 °C is cooled, at what temperature will crystals start to appear?

.....[1]

(ii) Estimate the solubility of potassium nitrate in water at 0 °C.

.....

		vw xtrapar	Pers.com
	10	20	ixaminer's
(g)	Why was the temperature taken when the crystals appeared on cooling rawhen they disappeared when heating ?	ath a Cambr	Use
			90
			CON
		[1]	
(h)	Note the point ${f P}$ on the graph and then complete the following sentence.		
	The point P represents a solution ofg potassium nitrate ing	water at a	
	temperature of °C.	[3]	

BLANK PAGE

11

CHEMISTRY PRACTICAL NOTES

Tests for anions

12 CHEMISTRY PRACTICAL NOTES Tests for anions anion test test result			
anion	test	test result	
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced	
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.	
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced	
sulphate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.	

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH4 ⁺)	ammonia produced on warming	_
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint