WANN, PAPAC CAMBridge, COM

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/03

Paper 3

May/June 2005

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of **22** printed pages and **2** blank pages.

- 1 Electricity is a useful form of energy.
 - (a) Use the information given to help you answer the questions below.

Wind power

Wind can be used as an energy source to produce electrical energy. One wind turbine is able to generate 2 megawatts (MW) of power.

Nuclear power

A nuclear power station uses enriched uranium as a fuel. Radioactive waste materials are produced. A typical nuclear power station can generate 1500 MW.

Electricity demand

Typical demand for electric power in an industrial country is about 50 000 MW.

> State one advantage and one disadvantage (apart from cost) of using each energy source to generate electricity in an industrial country.

	using wind power	using nuclear power
advantage		
disadvantage		

[4]

(b) A simple electrical generator is shown in Fig. 1.1.

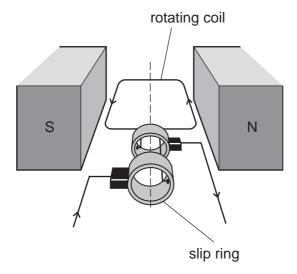


Fig. 1.1

(i)	Explain why a voltage is induced in the coil when the coil is turned.	
		 [1]
		r.,
(ii)	Explain why this generator produces an alternating current.	
		••••
		[2]

Fig. 2.1 shows a villus from the human alimentary canal. 2

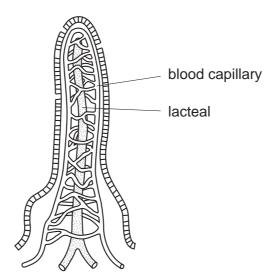


Fig. 2.1

(a)	Nar	me one part of the alimentary canal in which villi are found.	[1]
(b)	Des	e villi help absorption of digested food, such as glucose, to take place quickly. scribe two ways by which the structure of a villus helps this to happen.	
			[2]
(c)		er it has been absorbed, digested food is taken to the liver. The liver responds ulin, secreted by the pancreas, by removing excess glucose from the blood.	to
	(i)	Name the blood vessel which carries this digested food to the liver.	
			[1]
	(ii)	Suggest why it is useful for the digested food to be taken to the liver before it go on to other parts of the body.	es
			[2]

(d) Glucose is carried to all parts of the body in the blood.

	www.xtra	papers.com
	5	For Examiner's
GΙι	ucose is carried to all parts of the body in the blood.	Use
(i)	Describe how body cells can obtain energy from glucose when they are w supplied with oxygen.	For Examiner's Use
		On
		: L
	[3	
(ii)	Describe how body cells can obtain energy from glucose when they are short o oxygen.	f
	[2]
iii)	With reference to the effect of cigarette smoke on the body, suggest why the muscles of a smoker are unlikely to be able to work as hard as the muscles of a non-smoker.	
	[2	1

For Examiner's Use

3 Fig. 3.1 shows apparatus which can be used to investigate what happens when chloride solution is electrolysed.

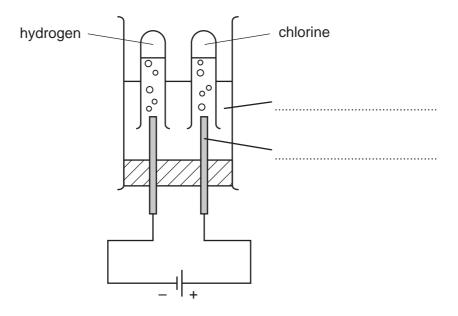


Fig. 3.1

(a) Complete the labelling of the diagram using words from the following list.

anode cathode current electrolyte ion [2]

(b) (i) An atom of hydrogen has a nucleon number of 1.

State the type of particle not present in the nucleus of this atom, but which is present in the nucleus of atoms of all other elements.

[1]

(ii) One atom of hydrogen joins with one atom of chlorine to form a molecule.

Draw a diagram of this molecule showing how the outer electrons in each atom are arranged.

[2]

[1]

(c) Chlorine is used to make the unsaturated organic compound chloroethene. The displayed formula of chloroethene is shown below.

Cl	Н
C =	=C
Н	Н

(i) Describe briefly a chemical test to show that this molecule is unsaturated.

Chloroethene is converted into poly(chloroethene) which is a thermoplastic material made of polymer molecules.

(ii) Complete the displayed formula of a short section of a poly(chloroethene) molecule.

$$-c-c-c-c-c-c-$$

(iii) Bakelite is an example of a thermoset material.

Describe and explain briefly the main difference in behaviour between bakelite and poly(chloroethene) when these materials are heated.

(a) Fig. 4.1 shows an astronaut. He is wearing a space suit designed to protect The space suit designed to the space suit designed t from electromagnetic radiation from the Sun.

	[2
Explain now electromagnetic radiation can harm the numan body.	

(b) Four astronauts are standing on four different planets. One of these planets is Earth, which has a gravitational field strength of 10N/kg.

Table 4.2 shows the mass and weight of each astronaut as they stand on the four planets.

Table 4.2

astronaut	mass/kg	weight / N
A	70	140
В	60	600
С	50	1000
D	80	160

(i)	Which astronaut is on Earth? Explain your answer.
	[1]
(ii)	Which two astronauts are standing on planets with the same gravitational field strength?
	[1]
iii)	Which astronaut would weigh the least on Earth? Explain your answer.
	[41]

Www. PapaCambridge.com (c) (i) Astronauts on the Moon are unable to talk directly to each other, but mu radio signals as the Moon has no atmosphere. Explain why sound waves need a medium such as air to travel through. (ii) If an explosion occurred beneath the surface of the Moon, an astronaut would be able to sense this, although he would not hear any sound. Explain how the astronaut would be able to sense this explosion. (d) A radio signal sent from Earth to an astronaut on the Moon travels 400 000 kilometres. The speed of radio waves is 300 000 km/s. (i) Calculate how long it will take the radio signal to travel from Earth to the astronaut on the Moon. Show your working and state the formula that you use. formula used working [2] (ii) If the wavelength of the radio waves used is 2 m, calculate the frequency of the radio waves. Show your working and state the formula that you use. formula used working

- Sheep, like most mammals, have skin covered by hair. The hair of sheep is called wo 5
- For Examiner's Use of is made of which makes ges as force is (a) For thousands of years, people have kept sheep to provide wool. Wool is made of protein, keratin, which forms fibres. These fibres have natural elasticity, which makes wool an excellent material for weaving cloth.

Fig. 5.1 shows how the length of wool fibres from a Merino sheep changes as force is applied to them.

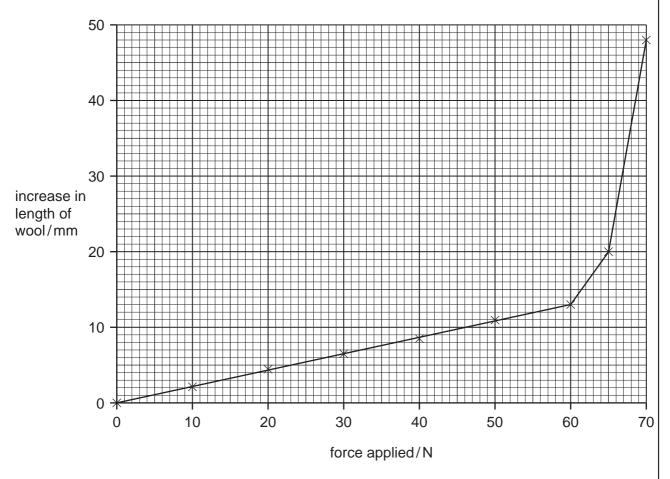


Fig. 5.1

(1)	of the wool fibres up to a force of 60 N.	gtn
		[2]
(ii)	What happens to the wool fibres as forces above 60 N are applied?	
		••••
		[1]

	For
	Examiner's
,	Use

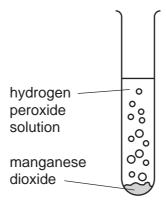
(b)	Wool helps sheep to maintain their body temperature in cold conditions. With reto methods of heat transfer, suggest how wool reduces heat loss from a sheep's to the air.	ani
	[2	2]

(c) The wool from different Merino sheep varies in the diameter of its fibres. An investigation was carried out in Australia to find out whether this variation is caused mainly by the environment, mainly by genes or by both of these factors.

Two groups of sheep were used. Group **A** came from a family in which the wool was especially fine (thin). Group **B** came from a family in which the wool was especially thick. Ten sheep from each flock were kept for eighteen months in a hot, dry area. Another ten sheep from each flock were kept for the same length of time in a cooler, wetter area.

After eighteen months, 100 wool fibres were collected from each of the forty sheep and the fibre diameters were measured. The mean diameter of fibres from each group was calculated. The results are shown in Table 5.2.

Table 5.2


	hot, dry area		cool, wet area	
	group A	group B	group A	group B
mean diameter of wool fibres / micrometres	18.55	20.72	16.82	19.06

(i)	State one variable which should have been controlled in this investigation, and explain why it was necessary to keep this variable constant.
	[2]
(ii)	Explain how the results in Table 5.2 support the suggestion that the thickness of the wool fibres is affected by a sheep's genes.
	[1]

(iii)	Explain how these results support the suggestion that the thickness of the fibres is affected by a sheep's environment.	Abhio
		Se. COM
	[1]	
(iv)	Explain how the results in Table 5.2 support the idea that this is an example of continuous variation.	L
	[2]	
	i-1	

- **6** Water, H₂O, and hydrogen peroxide, H₂O₂, are colourless, transparent liquids.
 - (a) Hydrogen peroxide slowly decomposes according to the equation

Manganese dioxide is an insoluble compound which catalyses this reaction. A student adds 1.0 g of manganese dioxide to an aqueous solution of hydrogen peroxide.

(i)	hydrogen peroxide has decomposed. Explain your answer.	the
		[2]
(ii)	Write a balanced equation for the decomposition of hydrogen peroxide.	
		[2]

(b) Water that contains permanent hardness cannot be softened by boiling.

Describe briefly how the process of ion-exchange removes permanent hardness frowater. You may draw a diagram if it helps you to answer this question.

 [3]

(c) The amount of hardness in water can be measured by shaking a known volume water with soap solution until a permanent lather is formed.

A student carried out a series of experiments to investigate hardness in three samples of water, A, B and C. His results are shown in Table 6.1.

Table 6.1

sample	volume of soap solution required for lather / cm ³		
Sample	before boiling	after boiling	
Α	0.5	0.5	
В	13.5	0.5	
C	8.5	3.5	

(i)	State and explain which sample, A , B or C , was the hardest before boiling.	
		[2]
(ii)	Explain the two results for water sample C .	
		••••
		••••
		[2]

(a) A student investigated the relationship between the potential difference across 7 and the current passing through it.

Fig. 7.1 shows the results of this investigation.

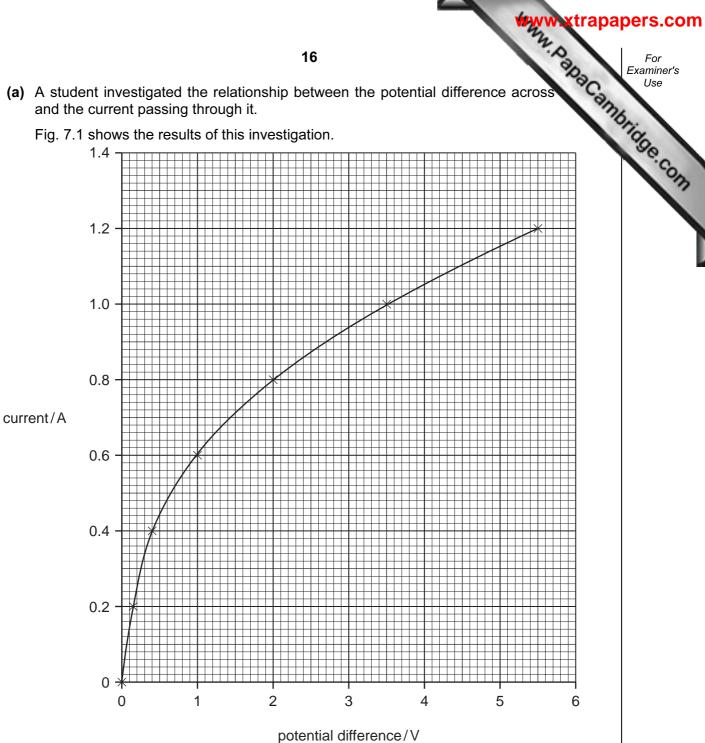


Fig. 7.1

(i) Using data from Fig. 7.1 calculate the resistance of the lamp when the current passing through it was 0.4 A.

Show your working and state the formula that you use.

formula used

working

WANN. Papa Cambridge.com (ii) From Fig. 7.1, the student concluded that the relationship did not correspond to the contract of the cont Ohm's law. Explain why the relationship between current and potential difference for the land did not correspond to Ohm's law. [2] (iii) On Fig. 7.1, draw the line for the results you would expect if a 5Ω resistor, which did obey Ohm's law, was used instead of the lamp. [2] (b) When a poly(ethene) rod is rubbed with a cloth, the rod acquires a negative electrostatic charge. During this process, a very small electric current flows. Explain what is happening.

8 Fig. 8.1 shows the structure of a flower.

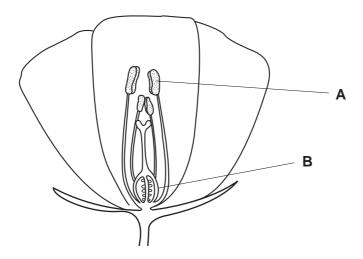


Fig. 8.1

		1 19. 0. 1	
(a)	Nar	me the parts labelled A and B .	
	Α		
	В		[2]
(b)	Des	scribe how pollination takes place in this flower.	
			 [3]
	•••••		[0]
(c)	Afte	er pollination, a tube grows from the pollen grain towards an ovule of the flower.	
	(i)	What passes down this tube?	
			[1]
	(ii)	Describe what happens when the tube reaches the ovule.	
			[2]

(d) A gardener grows bean plants. She enjoys their brightly coloured flowers and he the beans to eat.

She is worried that there are too many aphids (greenfly) on the bean plants in her garden. She sprays some of the bean plants with a pesticide to kill the aphids.

19

She is surprised to find that she actually gets fewer beans from the plants sprayed with pesticide than from the unsprayed plants.

(i)	Suggest why spraying with pesticides might reduce the crop of beans that she harvests.
	[2]
(ii)	Suggest and explain one other way by which she could try to control the aphids, without affecting the number of beans she gets from the bean plants.
	[2]

Mixtures of raw materials used to make three types of coloured glass are shown below

s of raw materials used to	20 make three types of colou	red glass are shown belo	xtrapapers.co
blue glass	violet glass	green glass	Tig
white sand	white sand	white sand	o.C.
potassium carbonate	sodium carbonate	sodium carbonate	19
borax	potassium nitrate	potassium nitrate	
lead oxide	calcium carbonate	calcium carbonate	
cobalt oxide	manganese dioxide	iron oxide	
	iron oxide	copper oxide	

(a)	fror	ggest how the mixture of raw materials required for colourless glass would differ in that shown above for violet glass.
		[3]
(b)	Iror	oxide is an ionic compound having the formula Fe ₂ O _{3.}
	(i)	The formula of an oxide ion is O ²⁻ . Draw a diagram of an oxide ion showing how all of the electrons are arranged.
		[1]
	(ii)	Explain, in terms of electronic structure, why oxide ions are less reactive than oxygen atoms.
		[2]

[2]

(iii) Deduce the electrical charge of the ion of iron in the formula Fe₂O₃. Explain your answer.

For Examiner's Use

(c) A chemist is investigating a mixture of substances to make an improved type of glass. She wants the finished glass sample to contain 14.0 g of calcium oxide. She plans to add calcium carbonate to the mixture before it is melted.

Calcium carbonate undergoes thermal decomposition according to the equation

$$CaCO_3 \longrightarrow CaO + CO_2$$

Calculate the minimum number of moles of calcium carbonate which the chemist should add to the mixture in order to ensure that the final glass contains 14.0 g of calcium oxide.

Show your working.

[3]
<u></u> [၁]

BLANK PAGE

Www.xtrapapers.com

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

						24]	
	0	4 He Helium	20 Ne Neon	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Rn Radon 86		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	5		16 Oxygen	32 S Sulphur	79 Se Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium
	>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium
	≥		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82		165 Ho
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy
Group					65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury		159 Tb Terbium
					64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
					59 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
					59 Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		150 Sm Samarium
		Hydrogen			56 Fe Iron 26	Ru Ruthenium 44	190 OS Osmium 76		Pm Promethium
			-		55 Wn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
					51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium
					48 T Ttanium	91 Zr Zirconium 40	178 Hf Hafnium 72		
					45 Sc Scandium 21	89 ×	139 La Lanthanum *	227 Ac Actinium 89	series eries
	=		Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 90-103 Actinoid series
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	Caesium 55	Francium 87	*58-71 L _€ 90-103 A

	₩WW	xtrapapers.com
F		alla
Lu Lu Lutetium 71	Lr Lawrenci 103	Can
Yb Yterbium 70	Nobelium 102	ARABAC AMBARITAGE COM
169 Tm Thulium 69	Md Mendelevium 101	Jan Jan
167 Er Erbium 68	Fm Fermium 100	1
165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
162 Dy Dysprosium 66	Cf Californium 98	pressure
159 Tb Terbium 65	BK Berkelium 97	ature and
Gd Gadolinium 64	Cm Curium	n tempera
152 Eu Europium 63	Am Americium 95	n³ at roon
Sm Samarium 62	Pu Plutonium 94	s is 24 dn
Pm Promethium 61	Neptunium 93	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
Neodymium 60	238 U Uranium 92	ane mole
141 Pr Praseodymium 59	Pa Protactinium 91	olume of o
140 Ce Cerium 58	232 Th Thorium 90	The vc

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

ω ×

Key