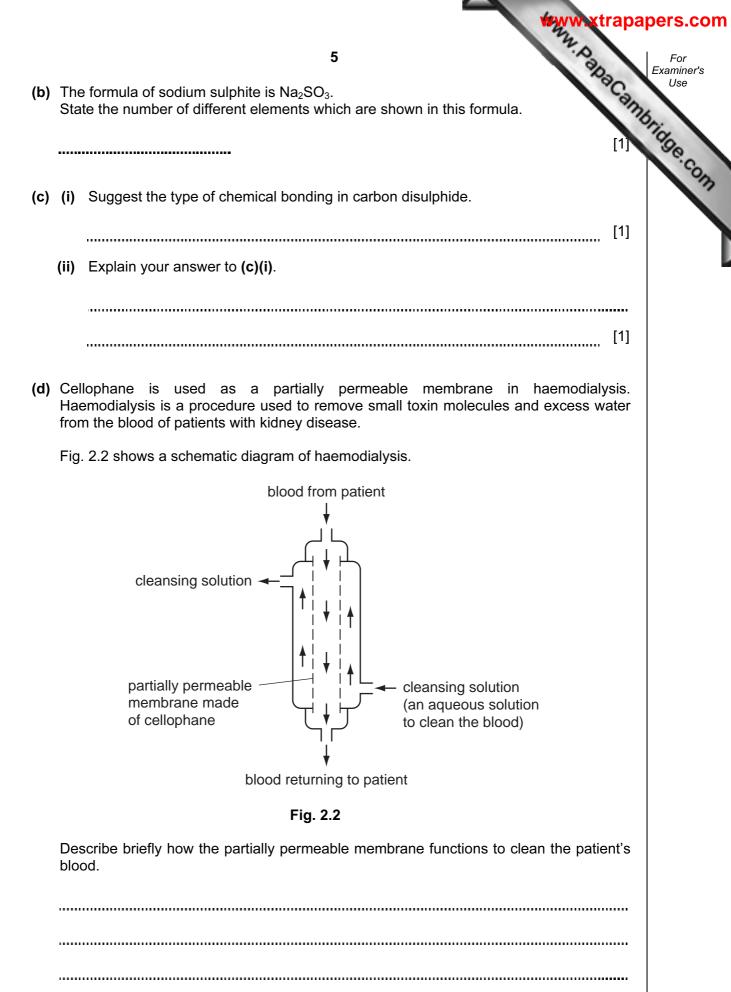
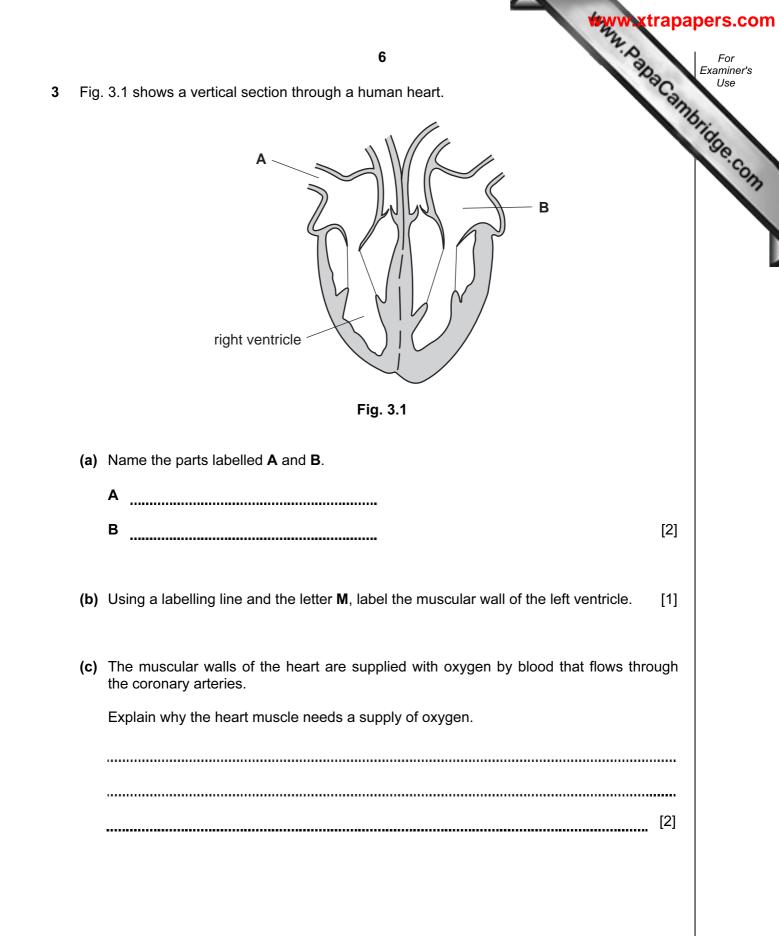

	Candidate Number Name	2.0
_	SITY OF CAMBRIDGE INT ernational General Certificat	ERNATIONAL EXAMINATIONS te of Secondary Education 0654/02
CO-ORDINA	TED SCIENCES	0654/02
Paper 2		
		October/November 2005
	wer on the Question Paper. laterials are required.	2 hours
Write in dark blue or bla You may use a soft per	ICTIONS FIRST ber, candidate number and name ack pen in the spaces provided o ncil for any diagrams, graphs, tab per clips, highlighters, glue or cor	n the Question Paper. bles or rough working.
Answer all questions. The number of marks is		rection fluid. of each question or part question.
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question.
Answer all questions. The number of marks is	s given in brackets [] at the end	
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question.
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question. For Examiner's Use 1
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question. For Examiner's Use 1 2
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question. For Examiner's Use 1 2 3
Answer all questions. The number of marks is	s given in brackets [] at the end	of each question or part question. For Examiner's Use 1 2 3 4
Answer all questions. The number of marks is A copy of the Periodic T	s given in brackets [] at the end Table is printed on page 24.	of each question or part question. For Examiner's Use 1 2 3 4 5
Answer all questions. The number of marks is A copy of the Periodic T If you have been giver details. If any details	s given in brackets [] at the end Table is printed on page 24.	of each question or part question. For Examiner's Use 1 2 3 4 5 6
Answer all questions. The number of marks is A copy of the Periodic T	a label, look at the s are incorrect or our correct details in	of each question or part question. For Examiner's Use 1 2 3 4 5 6 7
Answer all questions. The number of marks is a copy of the Periodic T details. If any details missing, please fill in yo	a label, look at the s are incorrect or our correct details in top of this page.	of each question or part question. For Examiner's Use 1 2 3 4 5 6 7 8
Answer all questions. The number of marks is A copy of the Periodic T details. If any details missing, please fill in yo the space given at the	a label, look at the s are incorrect or our correct details in top of this page.	of each question or part question. For Examiner's Use 1 2 3 4 5 6 7 8 9

Www.PapaCambridge.com 2 (a) Fig. 1.1 shows what happens when a beam of white light passes through a A and B are the two ends of the visible spectrum seen on the screen. screen Α В prism Fig. 1.1 (i) State the colour seen at A. [1] (ii) State the colour seen at **B**. [1] (b) Red is said to be a primary colour, while yellow is said to be a secondary colour. Explain what is meant by this statement and name one other primary colour and one other secondary colour. explanation primary colour secondary colour [3] (c) Below is a list of some waves. radio infra-red sound gamma ultrasound visible light ultraviolet Write down one wave from the list that is (i) a transverse wave, [1] (ii) a longitudinal wave, [1] (iii) emitted by hot objects but cannot be seen by the human eye. [1]

1



working


..... m [2]

- WANN, Papacambridge.com 4 2 Fig. 2.1 shows the main stages in an industrial process to convert cellulose obtained trees into cellophane. Cellophane is produced in the form of thin, transparent sheets. wood broken into pieces and soaked in sodium sulphite solution to make wood pulp containing cellulose wood pulp reacted with sodium hydroxide (NaOH) and carbon disulphide (CS_2) reaction with acid to form cellophane Fig. 2.1 (a) The molecules in cellulose are natural polymers. (i) Name the monomer which is polymerised to form cellulose. [1] (ii) Draw a circle around the chemical symbols below which represent the three main elements combined in cellulose. С Ce н He 0 Os [1] Lu
 - (iii) Draw a small section of a cellulose molecule.

Use the symbol -(M) to represent one of the monomer molecules.

[2]

o estimate (d) If a coronary artery is blocked, the person may suffer a heart attack. Table 3.1 shows part of a chart which doctors in New Zealand use to estimate chances of a woman having a heart attack.

Table	3.	1
-------	----	---

	percentage of women who are expected to have a heart attack within 5 years			
	age 40	age 50	age 60	age 70
non-smokers	1	3	5	7
smokers	4	6	12	15

(i) Use the information in Table 3.1 to describe how a woman's age affects her chances of having a heart attack, if she does not smoke.

	[2]
(ii)	If a 50 year old woman gives up smoking, suggest how this will affect her chances of having a heart attack.
	[1]
(iii)	Suggest one factor, other than age or smoking, which could affect the chances of a person having a heart attack.
	[1]

4	parad	chu	8 shows a flying squirrel. A flying squirrel uses large flaps of skin as a te to enable it to fall, glide and land safely. The air trapped under these flaps, a	For Examiner's Use
			falls, provides an upward force called air resistance.	stage.com
			س Fig. 4.1	
	(a) ((i)	As the squirrel starts to fall, it is accelerating. State the meaning of the term <i>accelerating</i> .	
				[1]
	(i	ii)	The squirrel weighs 20 N. Suggest a value for the air resistance while the squirre accelerating.	∍l is
			air resistance N	
			Explain your answer.	
				[2]
	(b) /	As t	the squirrel falls, it reaches a steady speed (terminal velocity) of 3 m/s.	
			State the value of the air resistance now.	
			air resistance N	
			Explain your answer.	
				[2]

4 m². (ii) The surface area of the squirrel on which the air resistance acts is $0.4 \, \text{m}^2$. Use your answer to (b)(i) and the formula

 $\frac{\text{force}}{\text{area}}$ pressure =

to calculate the pressure on the squirrel.

Show your working.

(c)	(i)	The mass of the squirrel is 2 kg. Calculate the kinetic energy of the squirrel when it
		is falling at its terminal velocity of 3 m/s.

Show your working and state the formula that you use.

formula used

working

..... J [3]

 N/m^2

.....

[2]

(ii) When the squirrel reaches the ground, it has lost its kinetic energy. Suggest where this energy has gone.

9

www.papacambridge.com 5 (a) Table 5.1 shows some information about two elements X and Y. Both elements are in the third period of the Periodic Table. Complete the table by writing the words high or low in the empty boxes. Two of the boxes have already been completed.

element	group number in Periodic Table	melting point	electrical conductivity	pH of element oxide in water
x	2	high		
Y	7	low		

[2]

[1]

- (b) Metallic elements are usually extracted from metal compounds found in rocks. A compound from which the metal titanium can be extracted is ilmenite, TiFeO₃.
 - (i) Name the other metallic element present in ilmenite.

.....

(ii) In order to obtain titanium, ilmenite is first processed to form titanium chloride. Titanium chloride is then reacted with magnesium as shown in the equation below.

titanium chloride + magnesium \rightarrow magnesium chloride + titanium

Magnesium is an expensive metal. Suggest why magnesium is used rather than a cheaper metal such as iron.

[1]

(iii) The titanium formed in the reaction in (ii) has to be melted and allowed to cool before it can be sold. The titanium is melted in a container in which all the air has been replaced by argon.

Suggest and explain why the air is replaced by argon before the titanium is melted.

..... [2]

	www.xtrapape	rs.cor
		For aminer's
Alloys con joints.	11 Intaining large amounts of titanium are widely used to make replacem	Use
		ne.co
		SIT
	pelvis replacement hip joint made of titanium alloy	
femur	(thigh bone)	
	and explain two properties of titanium alloy which make it a suitable material h to make replacement hip joints.	
property		
reason		
property		
reason		
	[4]	

Fig. 6.1 shows a section through a human eye. The eye is focused on a distant object 6

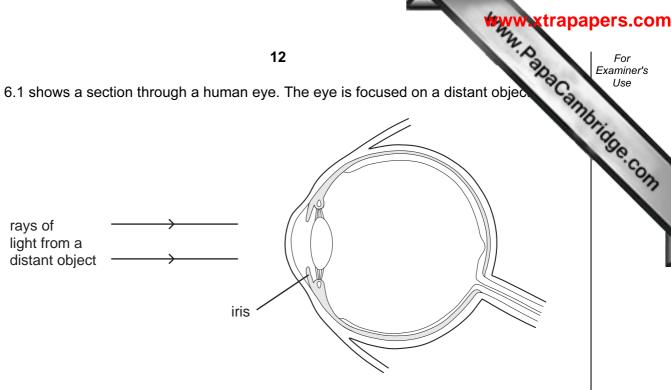


Fig. 6.1

- (a) On the diagram, continue the rays of light to show how they are brought to a focus. [3]
- (b) The iris is the coloured part of the eye. It can become wider or narrower to regulate the amount of light that can reach the retina.

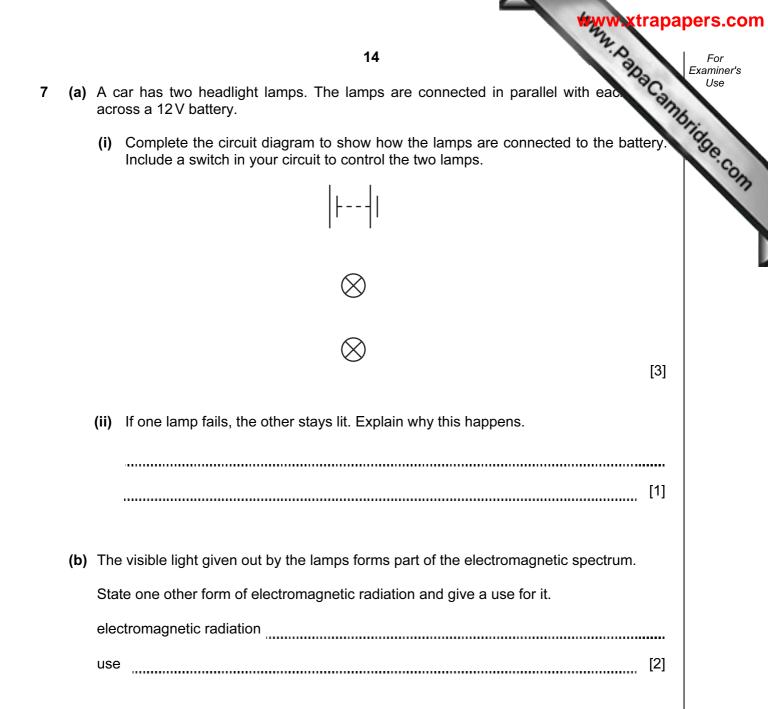
The colour of the iris of a rabbit is determined by the rabbit's genes. A rabbit with the genotype **Bb** or **BB** has brown eyes. A rabbit with the genotype **bb** has yellow eyes.

(i) Use this information to help you to complete these sentences.

Different forms of a gene, such as **B** and **b**, are called alleles.

is dominant. In rabbits, allele

The phenotype of a heterozygous rabbit is _____.


The two possible homozygous genotypes are _____ and ____. [3]

Γ	3	
L		•

(c) Occasionally, a mutation occurs in some of the cells of the iris, which may result in the iris becoming a different colour.

(i) What is a *mutation*?

	[1
(ii)	State one type of radiation which may cause mutation and explain how it does this

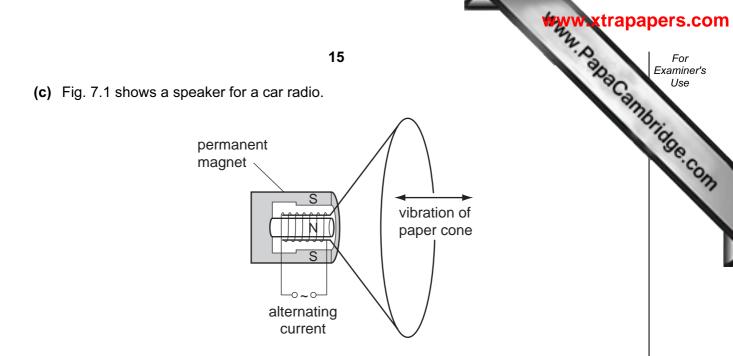
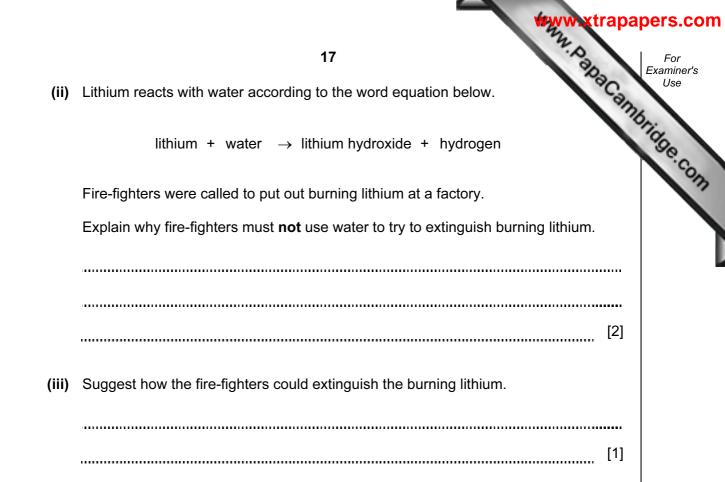
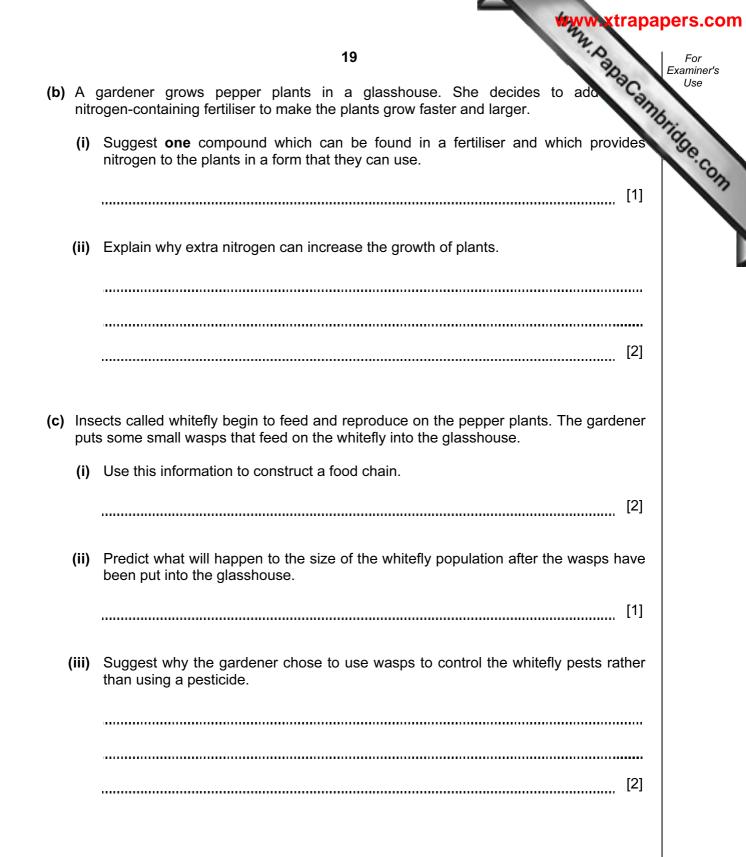


Fig. 7.1


Explain why the cone of the speaker vibrates when an alternating current passes through the coil.

 [3]

(d) Explain in terms of particles why adding more air to a car tyre increases the pressure in the tyre.


[2]

		MELVINA	xtrapapers.com
		16	For Examiner's
8	The che	emical symbol of the element lithium is shown below.	Tacan Use
		7 3	For Examiner's Use
	(a) (i)	State the number of neutrons in the nucleus of this lithium atom.	377
			[1]
	(ii)	State the number of electron shells (energy levels) in a lithium atom.	
			[1]
	(iii)	Lithium is obtained as the free element by electrolysis of molten lithium ch LiC <i>l</i> .	ıloride,
		Explain briefly why lithium ions travel to the cathode in this process.	
			[2]
	(iv)	Name the other product formed when lithium chloride is electrolysed.	
			[1]
	(b) (i)	When lithium burns in air, a white solid product is formed.	
		Suggest the name of this white solid.	
			[1]

- WAN. Papacambridge.com 18 (a) Fig. 9.1 shows a tissue from a plant. The cells in this tissue do not photosynthes 9 Fig. 9.2 shows some cells from an animal. Fig. 9.1 Fig. 9.2 (i) State one place in a plant that you would expect to find the cells shown in Fig. 9.1.[1] (ii) Use what you can see on the diagrams in Fig. 9.1 and Fig. 9.2 to describe two differences between a plant cell and an animal cell. ------1. 2. -----[2]
 - (iii) The plant cells in Fig. 9.1 do not photosynthesise. In the space below, draw a diagram of a plant cell from a leaf, which can photosynthesise.

Label your diagram to show how this cell differs from the ones shown in Fig. 9.1.

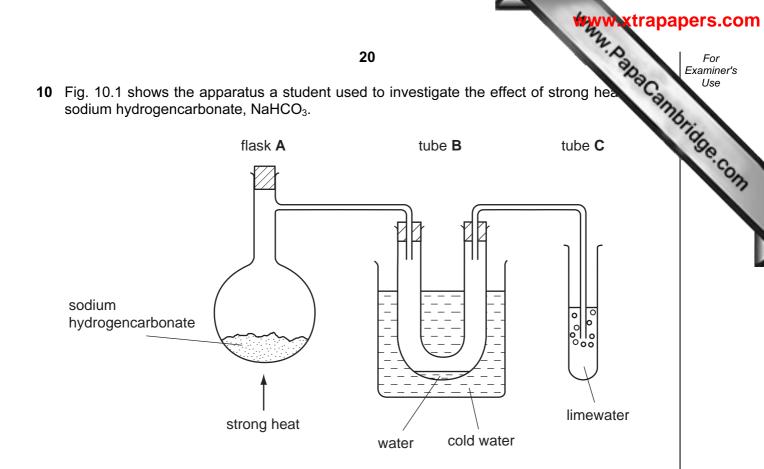
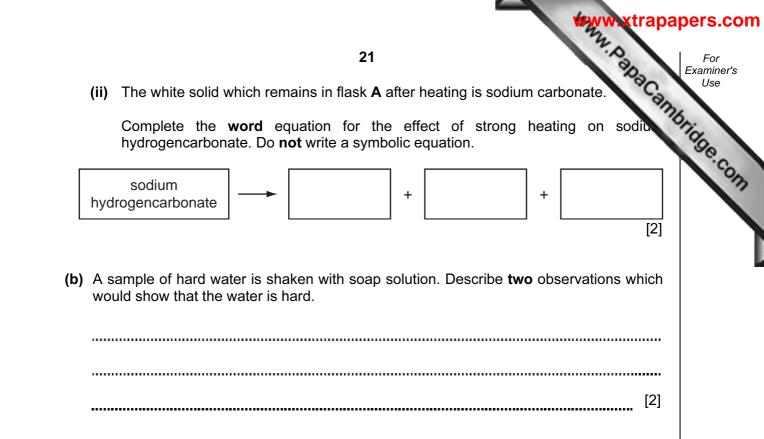


Fig. 10.1

Table 10.1 shows observations the student made before and after heating the sodium hydrogencarbonate for several minutes.

Table	10.1
-------	------


	before heating	after heating	
flask A	white solid	white solid	
tube B	tube empty	water has condensed	
tube C	clear liquid	liquid has become cloudy	

(a) (i) State two observations from Table 10.1 which show that a chemical reaction occurs when sodium hydrogencarbonate is heated.

 1.

 2.

 [2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

DATA SHEET The Periodic Table of the Elements

								www.xtrapapers.com
						24		. A BBB
	0	⁴ Helium ⁴	20 Neon Neon	40 Ar Argon	84 Krypton 36	131 Xenon 54	Radon 86	175 71 Lutetium 7 103 Lawrencium
	II>		9 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I Iodine 53	At Astatine 85	Arterbanders.com
	⋝		8 Oxygen 6	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Polonium 84	101 101 101 101 101 101 101 101
	>		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth	167 E Entrum 100 E Entrum 100 E Entrum
	≥		6 Carbon 6	28 Si licon	73 Ge Germanium 32	50 II 9	207 Pb Lead	ε
	≡		5 Baron 1	27 Al Aluminium 13	70 Ga 31 ^{Gallium}	115 In Indium 49	204 T1 Thallium	B0 152 157 159 162 165 B1 Eu Gd Tb Dy Hon aritum Europium Gadolinum Enform BK Cf Es 0u Am Cm BK Cf Es es 0u Am Cm BK Cf Es 0uim Americium g6 g1 g2 Homium 24 dm3 at room temperature and pressure (r.t.p.).
					65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury}	159 159 97 Berkelium 97 ture and 1
Group					64 Cu Copper	108 Ag Silver	197 Au Gold	edulinium Gadolinium 96 Curium 157 Gadolinium 167 Cm 96 Curium
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	152 Eu es ^{Europium} 95 at room
					59 Co ²⁷	103 Rhodium 45	192 Ir 1ridium 77	
		¹ Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76	Promethuum 61 any ga
			-		55 Man ganese 25	Technetium 43	186 Re Rhenium 75	144 Neodymium B2 Uranium 92 Uranium Da B2
					52 Cr Chromium 24	96 Molybdenum 42	184 V Tungsten 74	140 141 144 Ce Pr Nd Certum Praseodymium Nd Certum Praseodymium Nd Certum San Certum San Certum San Certum Ned Th Nd Paseodymium Ned Indition Unanium Protactinium 93 Other 93 Protactinium 93 The volume of one mole of any gas is
					51 Vanadium 23	93 Niob ium 41	181 Ta Tantalum 73	The vc
					48 T Titanium 22	91 Zr Zirconium 40	178 Hafnium 72	ic mass ool
					45 SC Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	227 Actinium B9 Actinium B0 B0 Actinium B0 B0 Actinium B0 B0 Actinium Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium B0 Actinium Actin
	=		9 Beryllium 4	24 Magnes ium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Baa Barium 56	Franctium 226 226 22 Franctium Radium 89 Addit 58-71 Lanthanoid serie 89 58-71 Lanthanoid serie 90-103 Actinoid serie 90-103 Actinoid series $a = relativ (ey x a = relativ b b protor $
	_		7 Lithium 3	23 Na Sodium	39 Potassium 19	85 Rb Rubidium 37	133 CS ^{Caesium} 55	Franction 226 Readium 87 226 Actinium 88 227 Actinium 89 Franction 88 Actinium 80 58-71 Lanthanoid series 89 90-103 Actinoid series a = relative a Key X a = relative a b b = proton (a