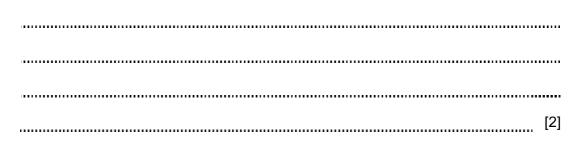

Centre Number	Candidate Number Name		2.0	
	SITY OF CAMBRIDGE INTE		ATIONS	ant
-	ernational General Certificate			ridge
CO-ORDINA	ATED SCIENCES		0654/03	
Paper 3		October/Nov	ember 2005	
	swer on the Question Paper. Materials are required.		2 hours	
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. Fhe number of marks i	aber, candidate number and name lack pen in the spaces provided on encil for any diagrams, graphs, table oper clips, highlighters, glue or correc- is given in brackets [] at the end c Table is printed on page 20.	the Question Paper. s or rough working. ction fluid.		
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. Fhe number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.		Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. Fhe number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.	stion.	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. Fhe number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. Fhe number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre is given in brackets [] at the end c	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2 3	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i	lack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre- is given in brackets [] at the end o Table is printed on page 20.	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2 3 4	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i A copy of the Periodic A copy of the Periodic	lack pen in the spaces provided on moli for any diagrams, graphs, table per clips, highlighters, glue or correct is given in brackets [] at the end of Table is printed on page 20. n a label, look at the ils are incorrect or	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2 3 4 5	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i A copy of the Periodic	ack pen in the spaces provided on encil for any diagrams, graphs, table oper clips, highlighters, glue or correct is given in brackets [] at the end of Table is printed on page 20.	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2 3 4 5 6	Use
Write in dark blue or bl You may use a soft pe Do not use staples, pa Answer all questions. The number of marks i A copy of the Periodic A copy of the Periodic soft he periodic	ack pen in the spaces provided on encil for any diagrams, graphs, table per clips, highlighters, glue or corre- is given in brackets [] at the end of Table is printed on page 20.	the Question Paper. s or rough working. ction fluid.	stion. For Examiner's 1 2 3 4 5 6 7 	Use

					22	wxtrapa
			2			".Day
1 (E	ed is said to be a <i>primal</i> plain what is meant by th her secondary colour.			be a <i>seconda</i> primary colou	
	e	planation				
	 р	imary colour				
	S	condary colour				[3]
	(b) B	elow is a list of some wave	S.			
		gamma ultrasound	infra-red	radio	sound	
		utrasound	ultraviolet	visible light		
	V	rite down one wave from t	he list that is			
	(i	a transverse wave,				
						[1]
	(ii	a longitudinal wave,				
						[1]
	(iii	emitted by hot objects b	ut cannot be seer	by the human e	ye.	
						[1]



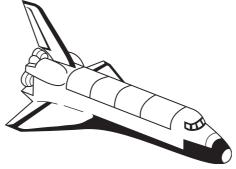
[3]

Table	2.	1
-------	----	---

• •	2.1 shows s of a wom	•			in New Z	Zealand us	se to estin	DahaCann	For Examiner's Use
				able 2.1					Idge.con
	percenta age	ige of wom 40	ien who ai age	•	d to have age			5 years e 70	
	no diabetes	with diabetes	no diabetes	with diabetes	no diabetes	with diabetes	no diabetes	with diabetes	
non-smokers	1	3	3	7	5	12	7	23	
smokers	4	7	6	13	12	22	15	33	

(i) Use the information in Table 2.1 to describe how a woman's age affects her chances of having a heart attack, if she does not have diabetes and does not smoke.

(ii) Imagine that you are a doctor. A woman smoker with diabetes asks you how she can improve her chances of living a long and healthy life.


Explain how you would use the information in Table 2.1 to explain to her why it is very important that she should give up smoking.

..... [3]

(iii) State one step that the woman could take, other than giving up smoking, which might reduce her chances of having a heart attack.

......[1]

	6
The ch	emical symbol of the element lithium is shown below.
	6 nemical symbol of the element lithium is shown below. 7 3 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
(a) (i)	State the number of electron shells (energy levels) in a lithium atom.
	[1]
(ii)	Lithium is obtained as the free element by electrolysis of molten lithium chloride, LiC <i>l</i> .
	Explain briefly how lithium ions, Li^{\dagger} , become atoms at the cathode in this process.
	[1]
(b) Lit	hium reacts with water according to the symbolic equation below.
	$2Li + 2H_2O \longrightarrow 2LiOH + H_2$
E>	plain why fire-fighters must not use water to try to extinguish burning lithium.
	[2]
	hium hydroxide crystals are used in manned space vehicles to remove carbon pxide gas from the air exhaled by the astronauts.

The symbolic equation for this reaction is

 $2\text{LiOH} + \text{CO}_2 \longrightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}$

	www.xtrapa	pers.com
(i)	7 The formula and charge of a lithium ion is Li ⁺ . Deduce the formula and charge of a lithium ion is Li ⁺ . Deduce the formula and charge of a lithium ion is Li ⁺ .	For Examiner's Use
(ii)	[2] A space vehicle carries a crew of 7 astronauts. Each astronaut exhales 18 moles of carbon dioxide every day. Calculate the total number of moles of carbon dioxide that the crew will exhale during a mission into space which lasts 10 days. Show your working.	SORT
(iii)		
(iv)	[3] Suggest why lithium hydroxide and not the hydroxide of any of the other Group 1 metals is used on the space vehicle. [2]	

Www.Papacambridge.com trapapers.com 8 4 Fig. 4.1 shows a flying squirrel. A flying squirrel uses large flaps of skin as a parachute to enable it to fall, glide and land safely. The air trapped under these flaps, a squirrel falls, provides an upward force called air resistance. Fig. 4.1 (a) (i) As the squirrel starts to fall, it is accelerating. State the meaning of the term accelerating. [1] (ii) The squirrel weighs 20 N. Suggest a value for the air resistance while the squirrel is accelerating. air resistanceN Explain your answer.

[2]

(iii) At one point as the squirrel falls, the resultant downward force on the squirrel is 10 N. Calculate the acceleration of the squirrel if its mass is 2 kg.

Show your working and state the formula that you use.

formula used

working

.....[2]

	9 er in its fall, the squirrel reaches a steady speed (terminal velocity) of 3 m/s. State the value of the air resistance now. air resistance N Explain your answer.	
.at	er in its fall, the squirrel reaches a steady speed (terminal velocity) of 3 m/s.	Can
(i)	State the value of the air resistance now.	.10
	air resistance N	
	Explain your answer.	
		[2]
(ii)	Explain why the value of the air resistance has changed.	
		[1]
iii)	The surface area of the squirrel on which the air resistance acts is 0.4 m ² . Use your answer to (b)(i) and the formula	
	pressure = $\frac{\text{force}}{\text{area}}$	
	to calculate the pressure on the squirrel.	
	Show your working.	
		[0]
		[2]

Www.PapaCambridge.com Fig. 5.1 shows a section through a human eye. The eye is focused on a distant object 5

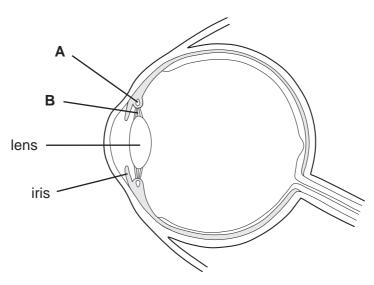


Fig. 5.1

- (a) When the eye focuses on a near object, the lens becomes thicker.
 - (i) Describe the changes that will take place in parts A and B when the eye focuses on a near object.

Α.	
	•••••
Β.	
	101
	[2]

(ii) Explain why the lens needs to become thicker in order to focus on a near object. You may draw a diagram if it helps your answer.

..... [3]

10

(b) The iris is the coloured part of the eye. It can become wider or narrower to regu amount of light that can reach the retina.

Www.papaCambridge.com The colour of the iris of a rabbit is determined by the rabbit's genes. A rabbit with the genotype **Bb** or **BB** has brown eyes. A rabbit with the genotype **bb** has yellow eyes.

(i) Use a genetic diagram to explain how two rabbits with brown eyes may have young with yellow eyes.

[3]

Occasionally, a mutation occurs in some of the cells of the iris, which may result in the iris becoming a different colour.

(ii) Ionising radiation may cause mutation. Explain how it does this.

[1]

(iii) Explain why this change in colour of the iris will not be passed on to the rabbit's offspring.

..... [2]

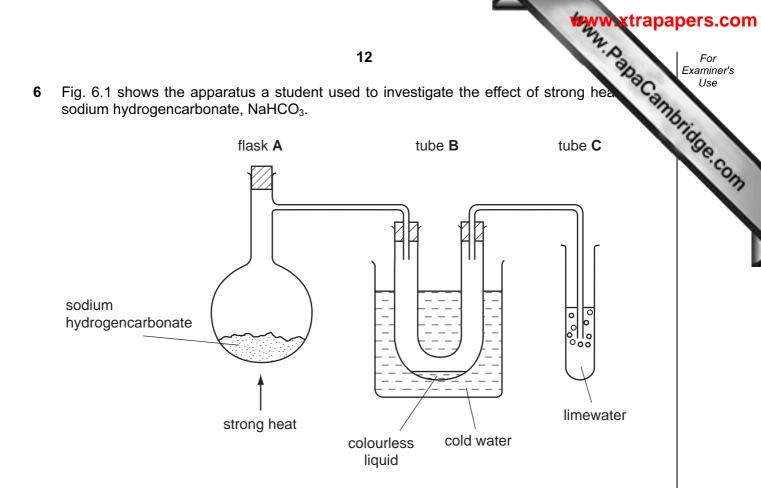


Fig. 6.1

Table 6.1 shows observations the student made before and after heating the sodium hydrogencarbonate for several minutes.

Table	6.1
-------	-----

	before heating	after heating
flask A	white solid	white solid
tube B	tube empty	colourless liquid has condensed
tube C	clear liquid	liquid has become cloudy

(a) State two observations from Table 6.1 which show that a chemical reaction occurs when sodium hydrogencarbonate is heated.

1.	
2.	
	[2]

	www.xtrapa	pers.com
	13	For Examiner's
(b)	An incomplete symbolic equation for the reaction in Fig. 6.1 is shown below.	Use
	$2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + \dots$	bride
	13 An incomplete symbolic equation for the reaction in Fig. 6.1 is shown below. $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + \dots$ Use the incomplete equation above to deduce the name of the colourless liquid which condenses in tube B. Explain your answer.	Se.com
	[2]	
(c)	Sodium carbonate is sometimes added to hard water in order to soften it. The symbolic equation below shows the reaction that occurs when sodium carbonate is added to a sample of hard water. In this equation the symbols (aq) and (s) show whether the substance is an aq ueous solution or a s olid respectively.	
	$Na_2CO_3(aq) + CaCl_2(aq) \longrightarrow 2NaCl(aq) + CaCO_3(s)$	
	(i) Name the type of chemical reaction shown above.	
	(ii) Explain why this reaction softens the water.	
	[2]	
	[4]	
(d)	Sodium carbonate is mixed with silicon(IV) oxide and other oxides to make glass. The mixture has to be heated to a very high temperature in order to melt it and allow the glass to form. Explain, in terms of their structures, why compounds like sodium carbonate and silicon(IV) oxide have such high melting points.	
	[3]	

- (a) A car has two headlight lamps at the front and two rear light lamps at the back. 7 lamps are connected in parallel with each other across a 12V battery.
- www.papaCambridge.com (i) Draw a circuit diagram to show how the two headlight lamps are connected to the battery. Include a switch in your circuit to control the two headlight lamps.

[3]

(ii) If one lamp fails, the other stays lit. Explain why this happens.

_____ [1]

(iii) Each headlight lamp takes a current of 5 A and each rear light lamp takes a current of 1A. What is the total current taken by these four lamps?

Show your working

[2]

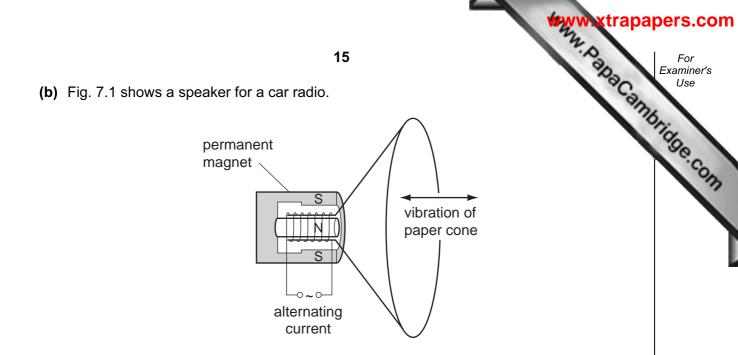


Fig. 7.1

Explain why the cone of the speaker vibrates when an alternating current passes through the coil.

		[3]
(c)		pressure of the air in car tyres must be correct to give a good grip on the road ace.
	(i)	Explain in terms of particles why adding more air to a car tyre increases the pressure in the tyre.
		[2]
	(ii)	Tyres become warmer during long journeys. Explain in terms of particles why this will result in an increase in tyre pressure.
		[2]

Www.PapaCambridge.com 16 8 A gardener in a country with a cool climate grows peppers in a glasshouse. Fig. 8. how light intensity affects the rate of growth of the pepper plants. С В rate of growth light intensity Fig. 8.1 (a) Explain the reasons for the shape of the graph between **A** and **B**, between **B** and **C**. [3] (b) The gardener thinks she might be able to increase the growth of her plants by burning a fuel such as methane in the glasshouse. (i) Write a word equation for the complete combustion of methane. [1] (ii) State two reasons why burning methane in the glasshouse might increase the growth of the pepper plants. 1. _____ 2. [2]

			Jei 3.com
		17	For Examiner's
(c)		other way of increasing the growth of the plants is to provide them with a staining nitrogen.	Use
	(i)	17 other way of increasing the growth of the plants is to provide them with a nataining nitrogen. Suggest one compound which can be found in a fertiliser and which provides nitrogen to the plants in a form that they can use.	149e.co.
		[1]	13
	(ii)	Explain why extra nitrogen can increase the growth of plants.	
		[2]	
	(iii)	Explain how the careless use of nitrogen-containing fertilisers near to streams and lakes can harm the organisms that live in them.	
		[3]	

Www.papacambridge.com (a) Table 9.1 shows some information about two elements X and Y. Both elements 9 the third period of the Periodic Table. Complete the table by writing the words high or low in the empty boxes. Two of boxes have already been completed.

element	group number in Periodic Table	melting point	electrical conductivity	pH of element oxide in water	
x	X 2				
Y	7	low			
				[2	

(b) A compound from which the metal titanium can be extracted is ilmenite, TiFeO₃. In order to obtain titanium, ilmenite is first processed to form titanium chloride. Titanium chloride is then reacted with magnesium. Symbolic equations for these two reactions are shown below.

reaction 1 $2\text{TiFeO}_3 + 7\text{C}l_2 + 6\text{C} \longrightarrow 2\text{TiC}l_4 + 2\text{FeC}l_3 + 6\text{CO}$ reaction 2 $TiCl_4 + 2Mg \longrightarrow 2MgCl_2 + Ti$

(i) Name one element which has been oxidised in reaction 1. Explain your answer.

.....[1]

(ii) Fig. 9.1 shows a diagram of a chlorine atom, showing only the outer electron shell.

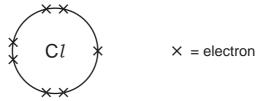


Fig. 9.1

	19 ⁴ · D 20	Fo. Exami
	19 Draw a diagram to show how the outer electrons are arranged in a mole chlorine.	ambridge.
iii)	[Describe how the arrangement of the electrons around the magnesium aton changes during reaction 2 .	2] 15
	[2	2]
Allo join	ys containing large amounts of titanium are widely used to make replacement h ts.	ip
fer	nur (thigh bone)	
	Igest why an alloy of titanium rather than pure titanium is more suitable for makir	ng
repl	acement hip joints which have to carry a person's weight.	-
		1

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department

DATA SHEET The Periodic Table of the Elements

								www.xtrapapers.com
	1					20		A Day
	0	4 Helium 2	20 Neon 10	40 Ar Argon	84 Krypton 36	131 Xe Xenon 54	Radon 86	175 71 Lutetium 73 103 103
	I>		9 Fluorine	35.5 C1 Chlorine	80 Bromine 35	127 I lodine 53	At Astatine 85	Annu strapapers.com
	>	-	16 Oxygen 8	32 S Sulphur 16	79 Se Selenium 34	128 Te Tellurium	Polonium 84	Mendelevium 101
	>		14 N itrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	167 Enterina 100 100 100 100 100 100 100 100 100 10
	≥		12 Carbon 6	28 Silicon	73 Ge Germanium 32	119 Sn	207 Pb 82 Lead	Ε
	≡		5 Boron 1	27 Aluminium 13		115 In Indium 49	204 T 7 Thallium 81	162 Dysprosium 66 Cf Californium 98 Pressure (
					65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80	159 Tb Bk Bretelium 97 ture and p
					64 Copper 29	108 Ag Silver	197 Au Gold 79	edentitium edenti
dn					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	50 152 157 159 162 165 1m Eu 6d Tb Dy Honium arium Eu 6d Tb Dy Honium 2u Am Cm BK Cf Es 3u Americium Gadolinium Berkelum 98 Cf Es 3d Americium Berkelum Berkelum 98 Cf Esseniu 3d Americium Berkelum Berkelum 98 Cf Esseniu 3d And Cm Berkelum Berkelum Berkelum Berkelum 3d And Cm Berkelum Berkelum Berkelum Berkelum 3d And Cf Es
Group					59 CO Cobalt 27	103 Rh Rhođium 45	192 Ir Iridium	
		¹ Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76	Promethium 61 any gas
]		55 Mn Manganese 25	Technetium 43	186 Re Rhenium 75	Neodymium 60 Seadymium 92 Uranium 92 Uranium
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74	140 141 144 140 141 144 Cerium Praseodymium Nd Carium Praseodymium Nd Carium Praseodymium Nd Carium Praseodymium Nd Th Pa U Inorium Prodomium Prodomium Neptunium 92 238 The volume of one mole of any gas is
					51 Vanadium 23	93 Nb Niobium	181 Ta Tantatum 73	140 58 Cerium 90 Thoitum 90 Thoitum
					48 T Ttanium 22	91 Zr Zirconium 40	178 Hafnium 72	
					45 SC Scandium 21	89 Vttrium 39	¥ Ę	227 Actinium B9 Actinium B3 Actinio B3 Actinio Actin
	=		9 Beryllium 4	24 Mg Magnesium 12	40 Ca Calcium 20	88 Srrontium 38		B88 Radium a a = b = - b = - 226 Radium b = - b = - 226 Radium
	_		7 Lithium 3	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 CS ^{Caesium} 55	Francium 226 Readium 226 Actinium 227 Actinium 227 B 227 Actinium *58-71 Lanthanoid series 90-103 Actinoid series a a = relative a Key x a = relative a b = proton (a