UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2007 question paper

0653 COMBINED SCIENCE 0654 CO-ORDINATED SCIENCES

0653/06 and 0654/06 Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2		Mark Scheme			labus	er
		IGCSE	– October/Novembe	r 2007	065	3/0654	20
(a) (i)	raisin h	Mark Scheme Syllabus er IGCSE – October/November 2007 0653/0654 raisin has become bigger and rounder raisin mass at start/g mass at end/g change in mass/g A (0.9) 1.4 (+)0.5 (-)0.1					ambr
		raisin	mass at start/g	mass at e	mass at end/g		ass/g
		А	(0.9)	1.4		(+)0.5	
		В	(0.8)	0.7		(–)0.1	
(ii)	masse	masses correctly written in table (no tolerance)			[2]		
(iii)	change	e in mass cor	rectly calculated (ecf)				[2]
(iv)	solutio	n A was less	concentrated (has a	higher water	potential) than the rais	in OWTTE
	• •	er has entere ree points)	ed (1) by osmosis (1)	until raisin cell	s becom	e turgid (1)	[3]
(v)	it lost v	vater (by eva	poration)				[1]
ar	-	s including th	nass were in the less le last point	(1) concentrated s	solution ([4] [Total: 13]
	iy 4 point	s including th		concentrated s			
	lution X =	s including th = acid (1) Y a	ie last point	concentrated s			[Total: 13]
(a) so (b) (i)	lution X = blution X = barium white (s including th = acid (1) Y a chloride (niti	ne last point and Z (both needed) an rate) (solution) independent mark)	concentrated s			[Total: 13] [2
(a) so (b) (i)	lution X = barium white (accept sulphu	s including th = acid (1) Y a chloride (niti precipitate) (i milky/chalky	ne last point and Z (both needed) an rate) (solution) independent mark)	concentrated s	ali (1)		[Total: 13] [2] [1]
(a) so (b) (i) (ii) (iii)	 blution X = barium white (accept sulphu accept not end 	s including th acid (1) Y a chloride (niti precipitate) (i milky/chalky ric acid correct form	ne last point and Z (both needed) an rate) (solution) independent mark)	to react with a	ali (1) uphate		[Total: 13] [2] [1] [1]
(a) so (b) (i) (ii) (iii)	y 4 point olution X = barium white (accept sulphu accept not end (an und	s including th acid (1) Y a chloride (niti precipitate) (i milky/chalky ric acid correct form bugh of soluti derstanding t	ie last point and Z (both needed) an rate) (solution) independent mark) ula where given but no ion X had been added	oncentrated s re alkaline/alka ot hydrogen su to react with a st be added)	ali (1) uphate		[Total: 13] [2] [1] [1] E)
(a) so (b) (i) (ii) (iii) (c) (i)	 by 4 point blution X = barium white (i accept sulphu accept not end (an und the colo 	s including th acid (1) Y a chloride (niti precipitate) (i milky/chalky ric acid correct form ough of soluti derstanding t our changed	ne last point and Z (both needed) an rate) (solution) independent mark) ula where given but no ion X had been added hat sufficient acid mus	oncentrated s re alkaline/alka ot hydrogen su to react with a st be added)	ali (1) uphate		[Total: 13] [2] [1] [1] E) [1]
 (a) so (b) (i) (ii) (iii) (c) (i) (ii) (iii) (d) so so (a 	 by 4 point blution X = barium white (i accept sulphu accept not end (an und the colo neutral blution Y = ccept lith 	s including th acid (1) Y a chloride (niti precipitate) (i milky/chalky ric acid correct form bugh of soluti derstanding t our changed isation = (sodium/am a (sodium/am	ne last point and Z (both needed) an rate) (solution) independent mark) ula where given but no ion X had been added hat sufficient acid mus from pink to colourles from pink to colourles	to react with a st be added) s	ali (1) uphate all of solu	ution Y (OWTT	[Total: 13 [2 [1 [1 [1 [1 [1 [2 [2

Page 3	Mark Scheme	Syllabus	er
	IGCSE – October/November 2007	0653/0654	2
(a) (i) 0.6	65, 0.53, 0.43 (+/– 0.01 A)	Syllabus 0653/0654	ambr
(ii) 25	x 0.045 = 1.1		1
• • •	x 0.045 = 2.7 (ohms) (one or both correct, read fi	rst decimal place)	
<i></i>	· · · · ·		
	x 0.65 = 0.72		
	$3 \times 0.53 = 0.95$		
	$7 \times 0.43 = 1.05$ (errors carried forward)		+10
2 0	or 3 values correct (2), 1 correct (1)		*[2]
(b) at least	t one of axes labelled and sensible choice of scale	e (1)	
	correctly plotted (ecf) (allow one error, +or- 1 sma		
line dra	awn through the origin (1)		[3]
(use of	OHP overlay can assist marking)		
(c) curve is	s above the first curve, passing through origin		*[1]
• •	on question paper		L
*not as	on question paper		

4 (a) line 2 and line 3 correct:

test	D	E	F	G
Benedicts	blue	blue	blue	red
biuret	blue	blue	blue	lilac
chloride	colourless	white	white	white

(b)(i)(ii) silver nitrate (1) line 4 correct (1)

(c) same volume of urine each time, same volume of reagent, same temperature (any 1) [1]

[Total: 7]

[4]

[2]

			www.xtrapape
Page	e 4	Mark Scheme	Syllabus 2 er
		IGCSE – October/November 2007	0653/0654
		sen burner or other source of heat (1) thermometer	Syllabus 0653/0654 (1)
()	ii) fill w	rith water	
(ii	ii) carb	oon dioxide (or formula)	[1
(b) 1	125 s, 39	9 s no tolerance	[2
• •		e the volume(amount) of the gas/measure the vol of equal mass(size)/other sensible suggestion	lume of acid used/ use piece o [1
		data to show that at higher temperatures time tures give faster reaction (1)	to react is shorter (1) highe [2
(e) a	at higher	r temperatures the particles move faster/collide with	the marble more often [1
			[Total: 10
6 (a) a	aluminiu	m = 45s, (1) nickel = 79 s (1)	[2
(b) ((i) meta	al softens (melts) when heated/is malleable	[1
(i	ii) stee	l (1) it is an alloy (1)	[2
(c) h	nydrocar	rbon (1) petroleum/crude oil (1)	[2
(d) r	nagnesi	um could ignite OWTTE	[1
• • •	ag the suggesti	metal bars to prevent heat loss/use a controlled on	d form of heating/other sensible [1
• •		Il conduct heat, glass will not conduct heat a reference to both materials)	[1

[Total: 10]