

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

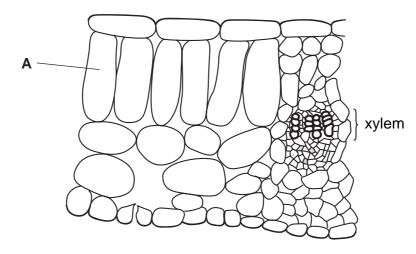
Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 24.


At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 24 printed pages.

re not s 1 Fig. 1.1 shows a transverse section through a leaf. The contents of the cells are not

2

Fig. 1.1

(a) In the space below, make a large, labelled diagram of cell A, to show its structure and contents.

(b) State two functions of xylem tissue in a leaf. 1. 2. [2]

(c) A farmer grows spinach in a glasshouse.

He decided to use artificial lighting to increase the yield of the crop. He tried out for different wavelengths of light.

Wan. Daba Cambridge. com He measured the volume of carbon dioxide taken up per square metre of leaves per second. He also measured the mass of the spinach leaves that were produced.

Table 1.1 shows his results.

wavelength of light / nm	units of carbon dioxide taken up per m ² of leaf per second	mass of leaves produced / kg per m ²
660	6.5	7.8
670	8.3	8.2
680	10.1	8.8
690	9.1	8.3

Table 1.1

(i) State two variables that should have been kept constant during this experiment. [2] (ii) Which wavelength of light gave the highest yield? [1] (iii) Explain why the pattern for the units of carbon dioxide taken up is similar to the pattern for the mass of leaves produced. (iv) Explain why plants are able to use some wavelengths of light more than other wavelengths. [2]

- Starch, cellulose and proteins are compounds found in plants. 2
- www.papacambridge.com (a) (i) State the chemical symbols of the three elements which are combined together in starch.

4

.....

(ii) Plants contain proteins which are compounds containing nitrogen atoms. These atoms have been obtained from gaseous nitrogen in the air by nitrogen fixation.

Explain the meaning of the term nitrogen fixation.

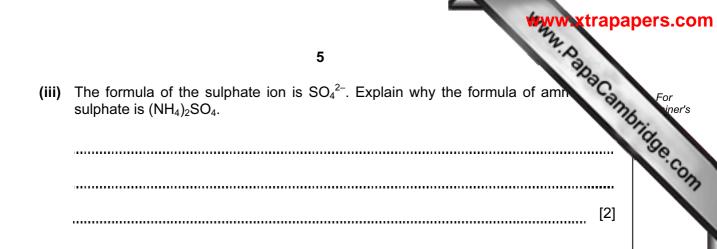
..... [2]

(b) Ammonium sulphate is a fertiliser which is produced in a reaction between sulphuric acid and ammonia solution. The balanced equation for this reaction is shown below.

 $2 \text{ NH}_3 + \text{H}_2\text{SO}_4 \rightarrow (\text{NH}_4)_2\text{SO}_4$

In an attempt to produce a solution containing only ammonium sulphate, a student used the following method.

- 50.0 cm³ of a solution containing 2.0 mol/dm³ of ammonia were placed into a glass 1 beaker.
- 50.0 cm³ of a solution containing 2.0 mol/dm³ of sulphuric acid were added to the 2 ammonia solution.
- (i) Calculate the number of moles of ammonia which the student used. (There are 1000 cm^3 in 1 dm^3 .)


Show your working.

[2]

(ii) Explain whether or not the student had calculated the correct amount of sulphuric acid to use.

Show your working.

[3]

www.papaCambridge.com 3 The circuit in Fig. 3.1 was set up and the current measured by meters M₁, M₂, M₃, M₅.

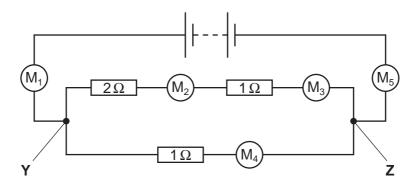


Fig. 3.1

(a) (i) The readings on M_1 and M_2 are shown in Table 3.1. Complete the table for M_3 , M_4 and M₅.

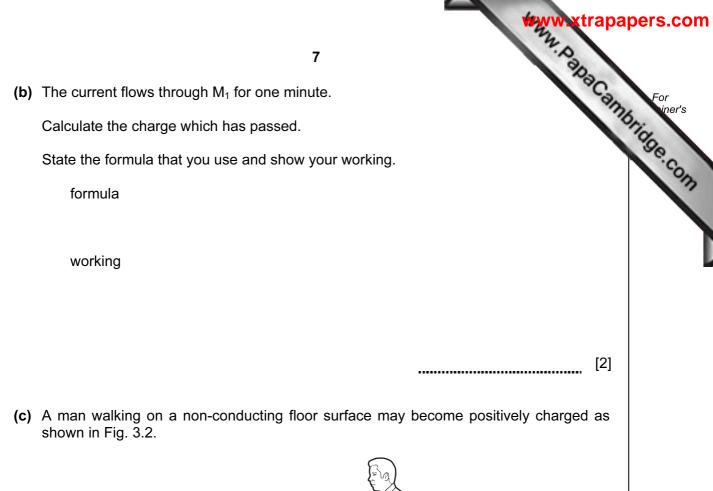
Та	b	e	3.	1
10			ν.	

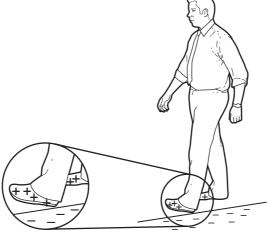
(ii) Calculate the total resistance of the 2 Ω and 1 Ω resistors in series.

(iii) Calculate the total resistance between Y and Z.

State the formula that you use and show your working.

formula

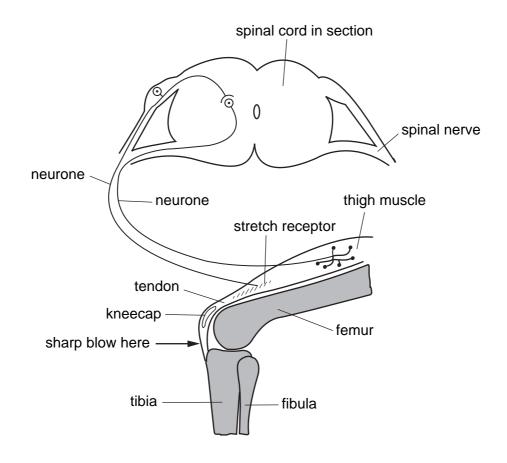

working


[3]

.....

[1]

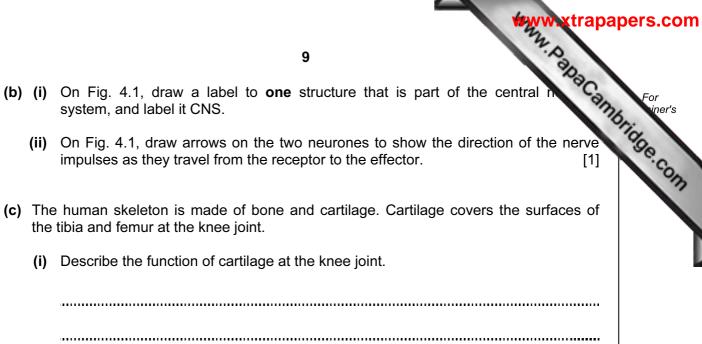
[1]



Explain in terms of charged particles how he acquired this charge.

[3]

www.papaCambridge.com A doctor may test a person's knee-jerk reflex, to check that the nervous system is N 4 properly. When a sharp tap is given just below the kneecap, one of the thigh mus contracts so that the lower leg moves quickly upwards.


Fig. 4.1 shows some of the structures involved in the knee-jerk reflex.

(a) (i) Explain what is meant by a *reflex action*.

..... [2] (ii) Explain the value of reflex actions to an organism. [2]

- [2]
- (ii) State one difference in the properties of bone and cartilage, and explain how this difference helps them to carry out their different functions.

[2]

9

- 5 The bodywork of a car is usually made from steel.
 - (a) If part of the bodywork goes very rusty it is usually removed and replaced with plast filler, before being painted.

Www.papaCambridge.com A car mechanic can use a magnet to find out if parts of the bodywork of a car have been filled with plastic filler.

He tests three areas of a car by placing a magnet near the surface as shown in Fig. 5.1.

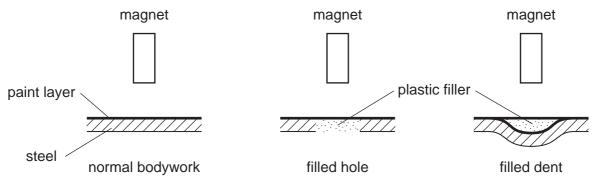
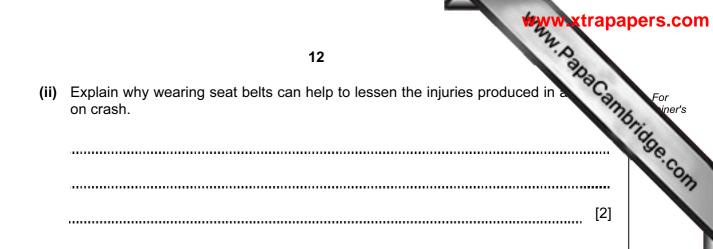
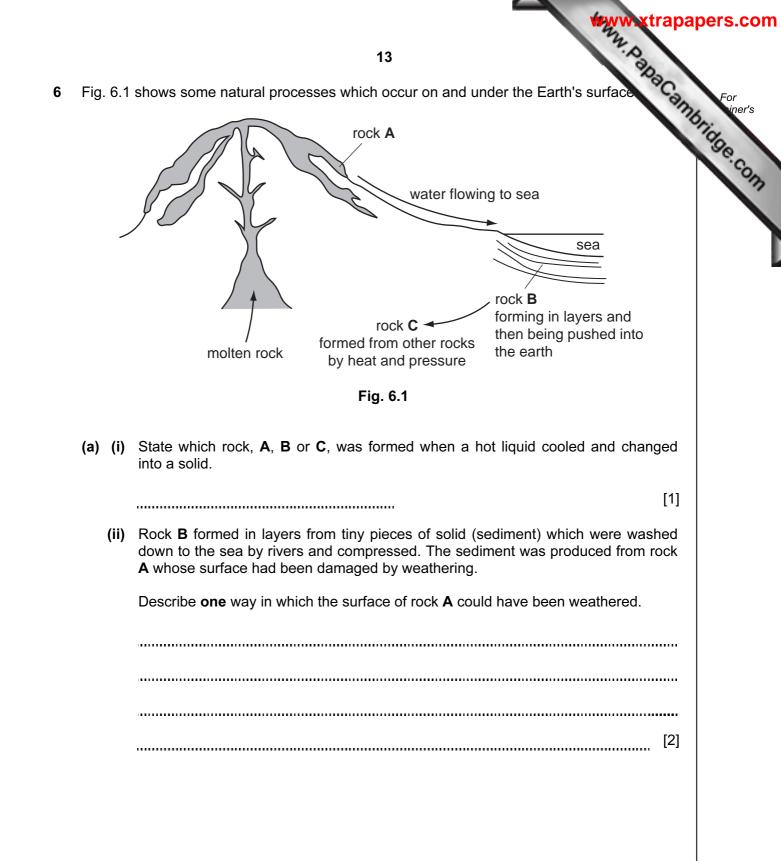


Fig. 5.1

(i) Complete the table.

area	effect on a magnet
normal bodywork	
filled hole	
filled dent	weakly attracted


[1]


(ii) What assumption have you made about the properties of plastic filler?

[1] (iii) Would this method work if the bodywork was made of aluminium? Explain your answer. [1] (iv) Suggest why the bodywork of some cars is made from aluminium rather than steel.

[1]

		www.xtrap
		11 2.02
(b)		11 For a car has been driven, the tyres are hot. The air in each tyre has a tempera C and the pressure of the air in the tyres is 2.5 N/m ² . For a while the temperature of the air in the tyres falls to 25 °C. What is the temperature of the air in the tyres in kelvins when the tyres are at 25 °C?
	Afte	r a while the temperature of the air in the tyres falls to 25 °C.
	(i)	What is the temperature of the air in the tyres in kelvins when the tyres are at 25° C?
		<u></u> К [1]
	(ii)	Calculate the pressure of the air in the tyres at 25 $^{\circ}\text{C},$ assuming that the volume of the tyre does not change.
		State the formula that you use and show your working.
		formula
		working
		[2]
	()	[3]
	(iii)	Explain in terms of particles why the pressure of the air in the tyres increases when the temperature increases.
		[2]
(c)	(i)	The car has a mass of 1000 kg. It is travelling at 12 m/s when it collides with a wall.
		Calculate the kinetic energy of the car before the collision.
		State the formula that you use and show your working.
		formula
		working
		[2]

14 (b) A sample of the water flowing into the sea, as shown in Fig. 6.1, was take For inter's of water under a microscope.

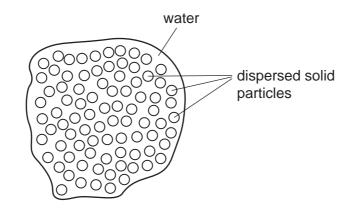


Fig. 6.2

Explain why the water sample looked cloudy and not transparent. You may wish to add some light rays to Fig. 6.2 to help you answer this question.

..... [2]

(c) The element bromine is extracted from concentrated solutions of bromine compounds.

The reaction between chlorine and sodium bromide solution produces bromine.

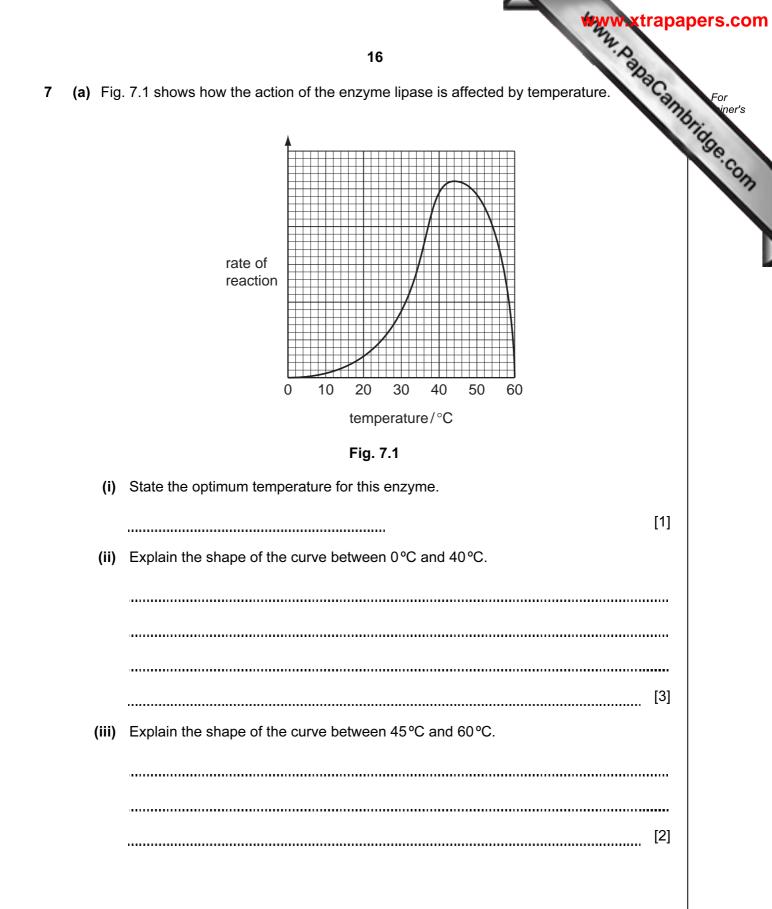
chlorine + sodium bromide → sodium chloride + bromine

(i) Explain why chlorine but **not** iodine reacts with sodium bromide.

[1]

15 (ii) In the boxes below, draw diagrams of a chlorine atom and a bromide ion, so the second second

Br


[2]

(iii) Describe how the numbers of outer electrons of the particles you have drawn in (ii) change during the reaction of chlorine with sodium bromide.
 [2]
 (d) A solution of bromine is used to discover whether a compound is a saturated or unsaturated hydrocarbon.

Explain the meanings of the words *saturated* and *unsaturated* hydrocarbon.

Cl

[2]

		www.xtrap	apers.com
		17	
(b)	(i)	Describe the sites of production and action of lipase in the human alin canal.	For iner's
		[2]	COM COM
	(ii)	Outline the function of lipase.	
		[1]	
(c)	oth	zymes are proteins. Name two kinds of proteins that are found in the human body, er than enzymes, and describe their roles.	
		[3]	
	•••••	[0]	

- Heat energy is obtained when hydrocarbon fuels are burned. Natural gas, methane 8 important hydrocarbon fuel. Natural gas is extracted from the Earth's crust.
 - (a) Methane is a fossil fuel formed from the remains of organisms.

Www.PapaCambridge.com Describe briefly what has happened to the remains of these organisms that has resulted in the formation of methane.

18

[2]

(b) Biogas is an alternative source of methane made from biodegradable materials. Biogas may be obtained from waste materials stored in landfill sites and from controlled reactions in vessels called digesters. Some information about two sources of biogas is shown in Table 8.1.

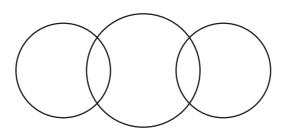
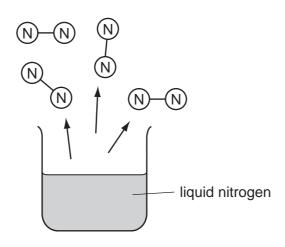

	% of substances in the biogas mixture		
	biogas from a digester	biogas from landfill	
methane	60 – 70	45 – 55	
carbon dioxide	30 – 40	30 – 40	
nitrogen	less than 1	5 – 15	
hydrogen sulphide	0.2	0.03	

Table 8.1

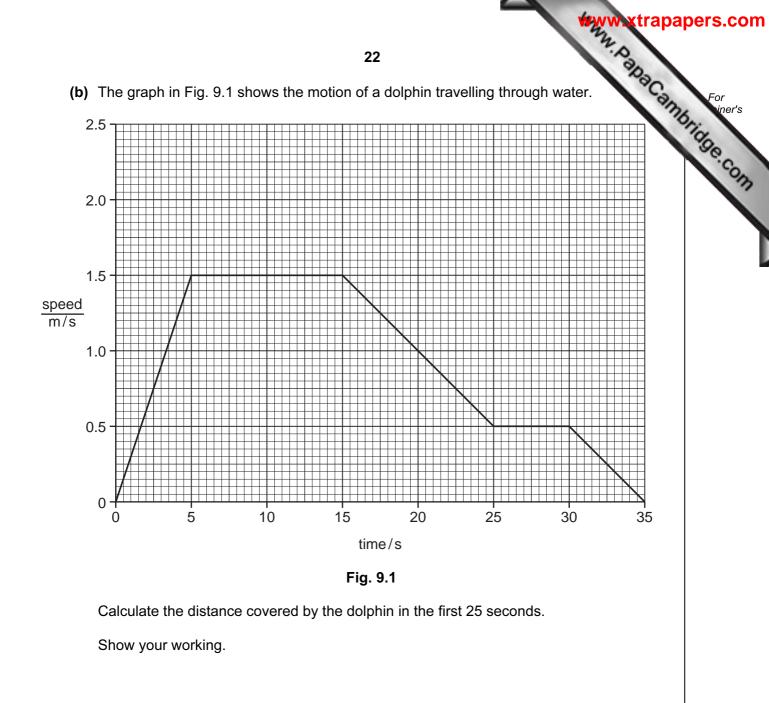
(i) Hydrogen sulphide is made of molecules in which two hydrogen atoms are bonded to one sulphur atom.

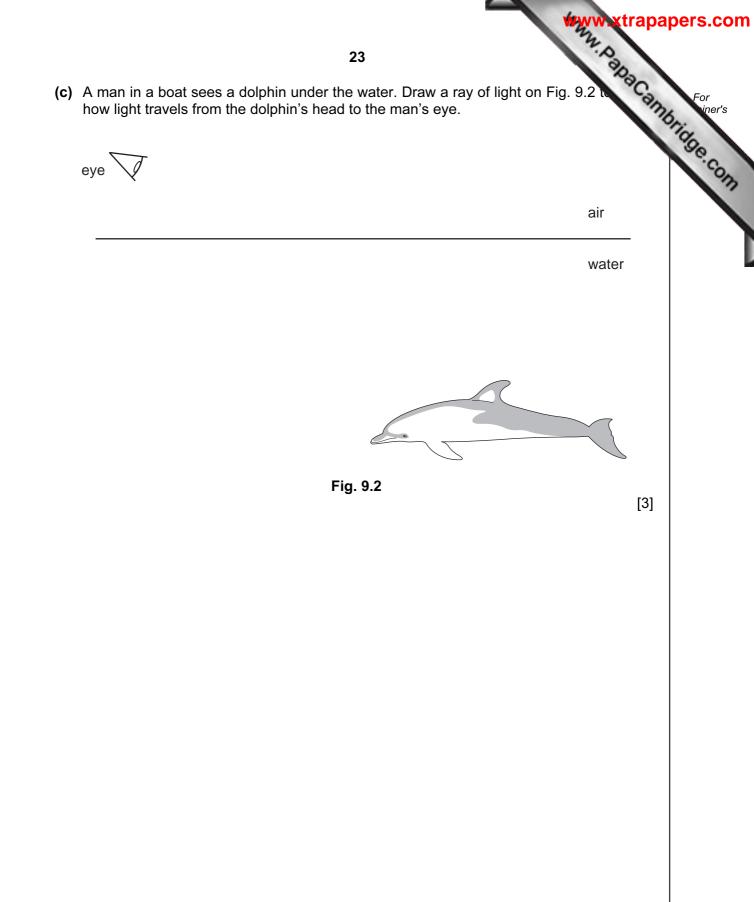
Complete the bonding diagram below to show


- the chemical symbols of the elements in a molecule of hydrogen sulphide,
- the arrangement of the outer electrons of each atom.

[2]

Www.papacambridge.com 19 (ii) When biogas is burned, any hydrogen sulphide present is oxidised. The symbolic equation below for this reaction is incomplete. State how many molecules of oxygen are required to oxidise two molecules of hydrogen sulphide and explain your answer. $2H_2S + \dots O_2 \rightarrow 2H_2O + 2SO_2$ number of oxygen molecules explanation [2] (iii) Use the data in Table 8.1 and information in (ii) to suggest and explain one advantage and one disadvantage of burning biogas from a digester rather than from landfill. advantage disadvantage [3]


form in For iner's (c) When liquid nitrogen evaporates, nitrogen molecules, N_2 , separate and form n_1 gas.


Explain, in terms of forces of attraction, why molecules of nitrogen rather than individual atoms of nitrogen separate from each other when liquid nitrogen evaporates.

 [2]

				apapers.com
			21	
9	(a)		Iphins can communicate underwater by emitting pulses of sound waves which requency of 40 000 Hz.	Campbilities com
		(i)	The speed of sound waves in water is 1500 m/s.	1200
			Calculate the wavelength of these waves.	·con
			State the formula that you use and show your working.	
			formula	
			working	
				[2]
		(ii)	The speed of sound in air is 330 m/s.	
			Suggest in terms of particles why the speed of sound waves in water is so mugreater than the speed of sound waves in air.	ıch
				[2]

[2]

					24	www.xtrapapers.com
ſ				1	24	aba
		0	4 Heitum	20 Neon 10 Neon 40 Ar 18	84 Krypton 36 Krypton 36 Xenon 54 Xenon 86 Radon	175 Lutetum 103 Lawrendum
		١١٨		19 Fluorine 9 35.5 C C C	80 Branine 35 127 127 53 Iodine 53 Astatine	773 Yterfoum Noodelium 102 and 102
		\geq		16 Oxygen 32 Sulphur 16 Sulphur	79 Selenium 34 128 Tallurium 52 Polonium 84	Mendelevium 1011 Mendelevium
	-	>		Nitrogen 31 15 15 14 14 14 14 14 14 14 14 14 14	75 As Arsenic 33 Arsenic 33 Arsenic 50 51 209 51 209 81 81 81 81 81	167 Each im 100 100 Each im Each i
	-	≥		6 Carbon 6 Carbon 74 Silicon 78 Silicon	73 Ge Ge Ge Ge 32 32 Germanium 32 50 Tin 50 tin 207 BD 82 Lead 6	_ Ε
	-	=		11 Boron Boron 27 Aluminium	70 Gaa 115 115 115 49 Indium 5 204 204 81 ^{natium} 81 ^{natium} 81 ^{natium} 81 ^{natium} 81 ^{natium} 81 ^{natium} 81 ^{natium} 81 ^{natium} 8 ^{natium}	Dysprosium 66 Cf 98 Californium 98 Ceftornium 98 Ceftornium
Its	-			<u>م</u>	E5 Znc Znc 21nc Cd admium admium 112 201 Incury	140141144144160152157159162162CePrNdPmSmEuGdTbDyHoDatumPraseofmiumNeotynumNootynumEuropumEuropumGdTbDyHoDatumPraseofmiumNootynumNootynumPomentiumSmEuGdTbDyHoDatumPraseofmiumNootynumNootynumPomentiumEuropumGdTbDyHoDatumPaseofmiumNootynumPomentiumBuDuDuPomentiumBitCfEsDatumPaseofmiumPaseofmiumPomentiumP
Periodic Table of the Elements					64 Copper 200per 30 Silver 44 Au Sold 80 Sold 80	adolinum Gd Gd Gd Gd Gadolinum 6 Cm 9 9 9 157 6 Gd 6 6 6 6 6 6 6 6 6 6 6 6 6
e of the	٩				59 Nickel 29 106 106 106 106 106 106 106 106 106 107 107 107 107 107 107 107 107 107 107	n ³ at room te
dic Table of th	Group				59 60 200 200 200 200 200 200 200 200 200	Esamarium Er and Esamarium Esamarium esamarium esamarium esamarium esamarium esamare esa
			Hydrogen		56 Fe Iron 27 101 101 46 CS Smitum 46 Smitum 77	Promethum 61 Neptunium 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94
The			T.		55 Mn anganese 26 25 76 76 76 76 75 75 75 76	Neodymum 60 (61 Providence) 144 France 1238 61 (61 Carlor of a car
					- E	Praseodymium Neo 59 91 datinium Un Pratectinium 92 91 datinium 92 91 datinium 92
						v voluma
					Vanadium Vanadium 23 93 93 93 181 181 73	8 S
					48 Tranium 22 91 91 40 Larconium 178 178 72	nic mass bol nic) number
					45 Scandium 21 89 89 89 139 139 139 139 57 ★	<pre>227 Actinum 89 Actinum 89 id series a = relative atomic mass X = atomic symbol b = proton (atomic) number</pre>
		=		9 Beryllium 4 24 Mg Magnesium	40 Calcium 20 88 88 88 88 88 88 88 137 137 56 Bartum 56	Fr Br 226 Br Radum 227 Actinum8Radum 99 Actinition*58-71 Lanthanoid series*58-71 Lanthanoid series*58-71 Lanthanoid series*69 $a = relative a$ b = proton (a
		_		7 3 Lithium 3 23 23 23 23 23 23	39 Potassium 19 85 85 85 85 85 73 7 7 55 55 55 55	Key b

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of