

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

State Com

*	
9	
2	
0	
W	
_	
∞	
0	
5	
_	
∞	

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				

CO-ORDINATED SCIENCES

0654/02

Paper 2 (Core)

October/November 2008

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
Total		

This document consists of 25 printed pages and 3 blank pages.

(c) The players need a lot of energy to play a game of football. State the **two** main food types which supply the players with this energy.

1	

2 _____

[2]

problen For iner's and eat insection In the 1930s, farmers growing sugar cane in tropical parts of Australia had problem insect pests, such as lacebugs, that ate the crop. Cane toads, *Bufo marinus*, 2 introduced from central America to try to solve the problem. Cane toads kill and eat insec and other small animals.

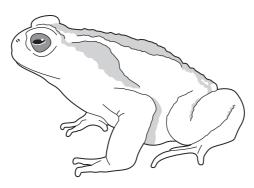


Fig. 2.1

(a)	amphibian.
	[1]
(b)	Name the genus to which cane toads belong.
	[1]
(c)	Use the information above to write a food chain involving cane toads. For each organism, state whether it is a producer or a consumer.
	[2]

(d) Biologists noticed that some cane toads had longer legs than others. They though perhaps toads with longer legs could travel faster than other toads.

They collected toads with different leg lengths, and measured the distance the toads travelled in 24 hours. The results are shown in Fig. 2.2.

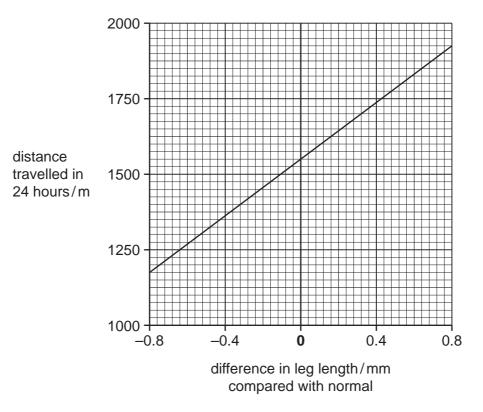


Fig. 2.2

(i) The number 0 on the x axis indicates toads that had normal leg lengths.

Calculate the speed at which a toad with normal leg length travelled. Show your working.

	m per hour [2
(ii)	Describe the relationship between the length of the toad's legs and the speed a which it travelled.
	[1
(iii)	State two variables that the researchers should have kept the same in thei investigation.

1

2 ______

(e)	The digestive system of a cane toad is very similar to the human digestive system diet of a cane toad is high in protein.			For iner's
	(i)	Name the kind of enzyme that digests proteins to amino acids.		Togo !
			[1]	CON
	(ii)	Suggest the part of a cane toad's digestive system where the amino acids absorbed into the blood.	are	
			[1]	

, and also 3 A student investigates the reaction between magnesium and dilute acid Y. Fig. 3.1 shows the metal being added to the acid contained in a test-tube, and also same tube some time later.

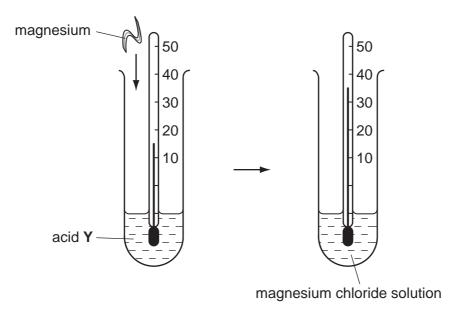
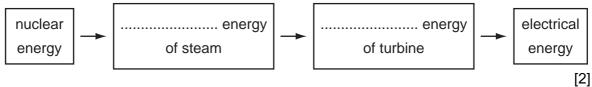



Fig. 3.1

(a)	(i)	Name the compound present after the reaction that was not present before.	
			[1]
((ii)	Name acid Y.	
			[1]
(i	iii)	The student observed bubbles of gas escaping from the mixture. She collect samples of this gas and tested them with limewater, a glowing wooden splint and lit wooden splint.	
		Explain which one of these tests produced a positive result.	
			[2]
(i	iv)	Explain how it is possible to tell from Fig. 3.1 that the reaction was exothermic.	
			 [2]

(b)	Magnesium alloys are widely used in making parts for aircraft and racing car eng			
	(i) One type of magnesium alloy contains the elements zinc and zirconium.			
		Suggest how this magnesium alloy is made.		
		[1]		
	(ii)	Suggest and explain why a magnesium alloy, rather than a transition metal such as iron, is used to make parts for aircraft and racing cars.		
		[2]		

(a) Some countries use nuclear fission reactors to generate electricity. (i) What is meant by the term *nuclear fission*? (ii) State one advantage and one disadvantage of generating electricity using nuclear reactors. advantage disadvantage (iii) Complete the boxes to show how nuclear power stations transfer energy.

(b) When nuclear fuel is used in a power station, ionising radiation is released.

Table 4.1 shows some information about three types of ionising radiation.

Table 4.1

radiation	ionising power	deflection by electric field
alpha	very strong	small
beta	moderate	large
gamma	weak	none

(i)	Explain why alpha and beta radiations are deflected by an electric field but gamma radiation is not.
	[1]
(ii)	Explain why beta radiation is deflected more than alpha radiation by an electric field.
	[1]
(iii)	Explain why alpha radiation is the most ionising.
	[1]
(iv)	State one effect of ionising radiation on living things.
	[1]
(v)	Why are radioactive sources stored in lead containers?
	[1]

5 Fig. 5.1 shows the female reproductive system.

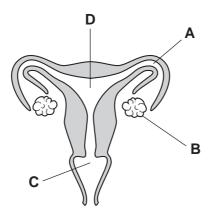
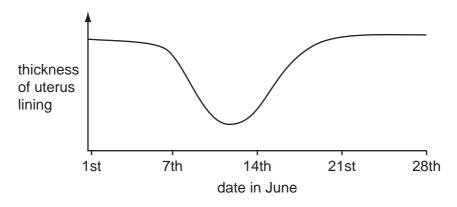


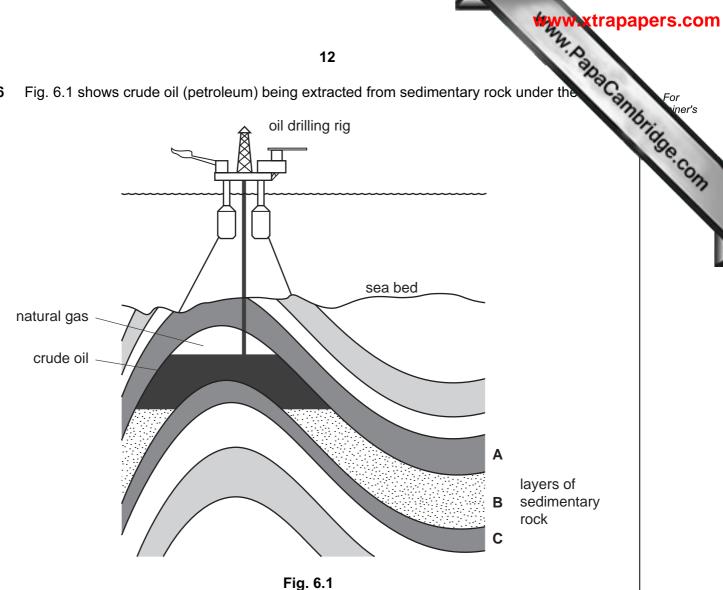
Fig.5.1

(a)	Give the letter	r on the diagram	n which represent	s each of the	following structures

[2]

(b) Fig. 5.2 shows how the thickness of the uterus lining changes during one month of the menstrual cycle.



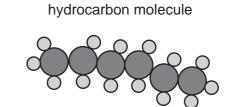

Fig. 5.2

(i) Explain how the graph shows that menstruation began on June 7th.			
	[1]		
	Suggest the date on which ovulation (the release of an egg from an ovary) occurred.		

[1]

		www.xtrapa	pers.com
		11	
(c)	Dur	ring fertilisation, a sperm fuses with an egg.	For
	(i)	Name the part of the reproductive system where fertilisation takes place.	Hick Tol 3
		11 ring fertilisation, a sperm fuses with an egg. Name the part of the reproductive system where fertilisation takes place. [1]	SE. COM
	(ii)	A sperm contains 23 chromosomes.	
		How many chromosomes does an egg contain?	
		[1]	_
	(iii)	Name the part of a sperm or an egg which contains the chromosomes.	
		[1]	
(d)	(i)	AIDS can be transmitted from one person to another during sexual intercourse.	
		Explain how this transmission can take place.	
		[2]	
	(ii)	Outline two ways by which the spread of AIDS by this method can be limited.	
		[2]	

Fig. 6.1 shows crude oil (petroleum) being extracted from sedimentary rock under the 6


- (a) The oil shown in Fig. 6.1 is contained in the layer of sedimentary rock labelled B.
 - (i) Name the two other main types of rock, in addition to sedimentary rocks, which make up the Earth's crust.

1	
2	
	[2

(ii) The oil in Fig. 6.1 is found only in rock layer **B** and not in layers **A** or **C**.

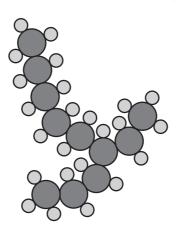
Suggest the property of rock B which allows it to contain oil.	is different from rocks A and C , and which
	[1]

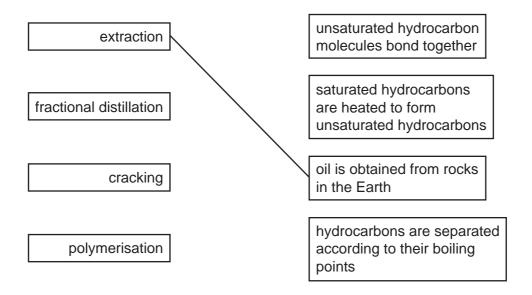
(b) Crude oil is a mixture of different hydrocarbon molecules. A typical hydromolecule is shown in Fig. 6.2.

carbon atom
hydrogen atom

Fig. 6.2

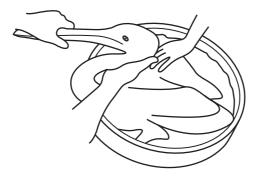
Some hydrocarbon molecules are different from others in crude oil because their carbon atoms form a branched chain as shown in Fig. 6.3.




Fig. 6.3

Describe **two** other ways in which hydrocarbon molecules can be different from one another.

1	
2	
	[2]


(c) Some hydrocarbons are changed by chemical reactions into a very wide ra materials including plastics. Plastics are made of polymer molecules.

Some of the reactions and processes which are required to produce a typical plastic are shown below. Draw lines linking the statements. One line has already been drawn.

[2]

(d) If an oil tanker is involved in an accident, oil may spill into the sea. If sea birds become covered in crude oil they will die unless the oil can be removed.

(1)	Why is water alone not able to wash the oil from the birds?
	[1]
(ii)	Suggest what could be added to the water in order to remove the oil from the birds.
	[1]

15

BLANK PAGE

Please turn over for Question 7

An	airlir	ne passenger enters an airport.	Car
(a)	Не	buys some hot food at the restaurant and carries it away in a polystyrene contain	
	Exp	plain why a polystyrene container is used to keep food hot.	
	•••••		[1]
(b)	He	then moves up an escalator (moving staircase) as shown in Fig. 7.1.	
		6 m	
		Fig. 7.1	
	The	e passenger weighs 900N.	
	(i)	Calculate the work done lifting the passenger a vertical distance of 6 metres.	
		State the formula that you use and show your working.	
		formula	
		working	
		J	[2]
	(ii)	State the potential energy the passenger has gained when he reaches the top the escalator.	o of
		J	[1]

(c)) The aeroplane that the passenger travels on is able to navigate using radar.				V
	This	s involves the use of microwaves. These are part of the electromagnetic s	spectrum	"Brie	2
	(i)	Name one other wave which is part of the electromagnetic spectrum.			9
				[1]	1
	(ii)	State the speed at which these waves travel in a vacuum.			
			m/s	[1]	

8 Fig. 8.1 shows an alveolus and a blood capillary in the lungs.

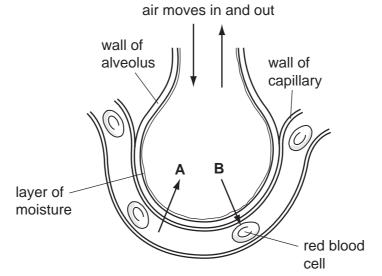


Fig. 8.1

(a)	(i)	Name the gases that move as indicated by arrows A and B .	
		A	
		В	[2]
	(ii)	Name the process by which the gases move.	
			[1]
(b)	Des	scribe what happens in the red blood cells as they pass through the lungs.	
			[2]

(c) Fig. 8.2 shows the structure of a leaf.

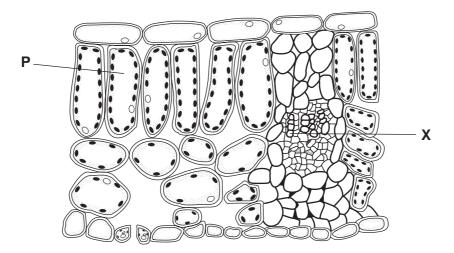
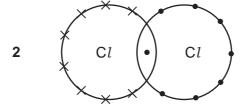


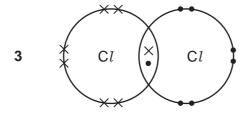
Fig. 8.2

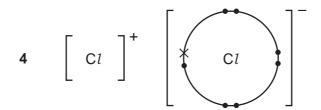
(i)	Cell P contains many chloroplasts and can photosynthesise.		
	At night, cell P takes in oxygen and gives out carbon dioxide.		
	In the daytime, cell P takes in carbon dioxide and gives out oxygen.		
	Explain why this happens.		
	at night		
	in daytime		
		[3]	
(ii)	On Fig. 8.2, draw an arrow to show how gases travel to cell P from the air.	[1]	
(iii)	Cell X is a xylem vessel.		
	Give two functions of a xylem vessel in a leaf.		
	1		
	2	[2]	

Vary.	vw xtrapa	
te the	e pi. Tarcanno	For iner's
٢		S. COM

Litmus and alizarin yellow are substances which can be used to indicate the pasolution. The colours of these substances in solutions of different pH ranges are shall below.


pH 4.5 and lower pH 8.3 and higher blue pH 10.1 and lower pH 12.0 and higher


		alizarin yellow	yellow	brown	
(a)		udent wishes to find ou ne substances named a		on is an acid or an alkali by	using one
	Ехр	lain why she should use	e litmus and not alizar	n yellow.	
	•••••				<u></u> [2]
(b)		nus is obtained from p mical formula of alizarin		zarin yellow is a synthetic D_5 .	dye. The
	(i)	Explain the meaning of	f the term synthetic dy	<i>e</i> .	
					[2]
	(ii)	How many metallic ele	ments are shown in th	e formula of alizarin yellow?	
					[1]
	(iii)	Name a method which litmus and alizarin yello		out whether a mixture conta	ined both
					[1]


(c) The atoms in molecules are joined by covalent chemical bonds.

Explain which one of the diagrams, 1 to 4, shows a covalent bond between the atom in a chlorine molecule.

> ClCl

10 (a) A simple circuit is shown in Fig. 10.1.

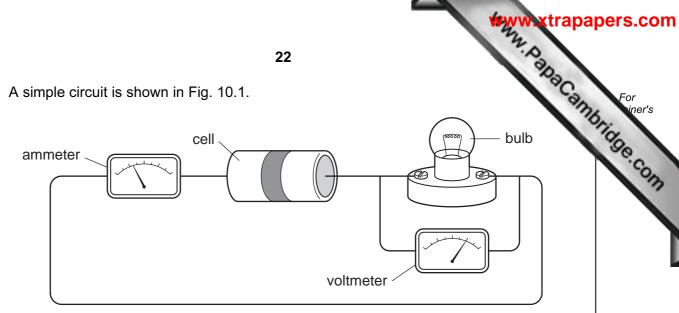


Fig. 10.1

In the space below, draw the circuit diagram for this circuit using the correct symbols.

(b) Fig. 10.2 shows a d.c. electric motor.

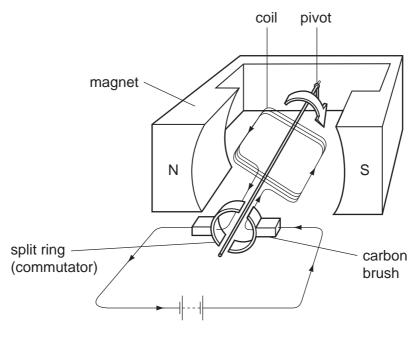


Fig. 10.2

[3]

		www.xtrapape	ers.com
		23	
	(i)	Suggest two ways of making the coil spin more quickly.	For
		23 Suggest two ways of making the coil spin more quickly.	E.
			COM
		2	
		[2]	1
	(ii)	Apart from changing the direction of the current in the coil, how could you reverse the motion of the coil?	
		[1]	
(c)	An	electric motor is connected to a 240 V supply.	
	The	e maximum current used by the motor is 4A.	
	(i)	Use the formula power = voltage x current to calculate the maximum power put into the motor.	
		Show your working.	
	(ii)	Explain why the electrical input power will be greater than the useful mechanical output power.	
		[2]	

11 Fig. 11.1 shows the apparatus and substances used by a student to make an electric

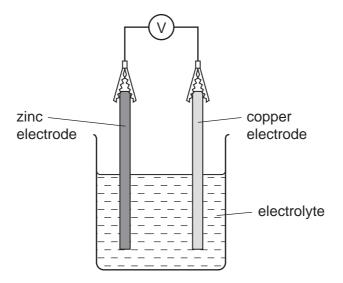


Fig. 11.1

(a)	(i)	What type of compound must be dissolved in water to produce an electrolyte?	
			[1]
	(ii)	The student finds that the voltmeter reads 1.1 V.	
		He then replaces the copper electrode with another electrode made of zinc.	
		Predict and explain briefly the new voltmeter reading.	
			[2]

(b)		he electrical cell in Fig. 11.1 zinc atoms are converted into positively charges, Zn ²⁺ .
	(i)	State the number of electrons in one atom of zinc. Use your copy of the Periodic Table on page 28 to help you to answer this question.
		[1]
	(ii)	Describe what happens to a zinc atom when it changes into a zinc ion.
		[2]
(c)	Fig.	11.2 shows an electrical cell used in a personal stereo.
		- +
		Fig. 11.2
	The	following chemical reaction occurs inside the cell when the stereo is switched on.
		$Zn + 2MnO_2 \rightarrow ZnO + Mn_2O_3$
	Nar	ne the substance which is oxidised in this reaction.
	Exp	lain your answer.
	sub	stance oxidised
	exp	lanation
		[2]

26

BLANK PAGE

BLANK PAGE

	e Elements
SHEET	of the
DATA SF	Table
Δ	Periodic
	The

									1	***WW	xtrapapers.com
					2	8					Para
	0	Helium	20 N eon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		Lutetium 771	Lr Lawrencium 103	AdhaCambhidge.com
	=		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	Se. Con
	>		16 Oxygen 8	32 S Sulphur 16	Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101	
	>		14 Nitrogen 7	31 Phosphorus 15	AS Arsenic	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	Fm Fermium 100	
	2		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82		165 Ho Holmium 67	ES Einsteinium 99	(r.t.p.).
	=		11 Boron 5	27 A1 Auminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66	Cf Californium 98	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).
					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97	ature and
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Curium 96	n tempera
Group					S9 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	n³ at roon
Gro					59 Co Cobalt 27	103 Rh Rhodium	192 Ir Irdium		150 Sm Samarium 62	Pu Plutonium 94	is is 24 dr
		T Hydrogen			56 Fe Iron 26	Ru Ruthenium 44	190 OS Osmium 76		Pm Promethium 61	Neptunium	of any ga
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium		144 Nd Neodymium 60	238 U Uranium 92	one mole
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium	olume of c
					51 V Vanadium 23	93 Nobium A1	181 Ta Tantalum		140 Ce Cerium 58	232 Th Thorium	The
					48 Ti Titanium 22	2 r Zirconium 40	178 # Hafnium 72			nic mass bol nic) number	
					45 Sc Scandium 21	89 ×	139 La Lanthanum _*	227 Ac Actinium 89	series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number	
	=		9 Be Beryllium	Magnesium	40 Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	в Х	
	_		7 Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L ₂	Key	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.