CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CO－ORDINATED SCIENCES

0654／21
Paper 2 （Core）
October／November 2011
2 hours
Candidates answer on the Question Paper．
No Additional Materials are required．

READ THESE INSTRUCTIONS FIRST

Write your Centre number，candidate number and name on all the work you hand in．
Write in dark blue or black pen．
You may use a soft pencil for any diagrams，graphs，tables or rough working．
Do not use staples，paper clips，highlighters，glue or correction fluid．
DO NOT WRITE IN ANY BARCODES．
Answer all questions．
A copy of the Periodic Table is printed on page 24.
At the end of the examination，fasten all your work securely together．
The number of marks is given in brackets［ ］at the end of each question or part question．

For Examiner＇s Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of $\mathbf{2 3}$ printed pages and $\mathbf{1}$ blank page．

1 (a) Fig. 1.1 shows a section through a human eye.

Fig. 1.1
(i) Name parts \mathbf{X} and \mathbf{Y}.

X \qquad
Y
(ii) On Fig. 1.1, draw one ray of light entering the eye and reaching an area where light-sensitive cells are found.
(iii) On Fig. 1.1, use a label line and the letter \mathbf{F} to label one part of the eye that helps to focus light onto the light-sensitive part of the eye.
(iv) Describe how information is sent from the light-sensitive cells to the brain.
\qquad
\qquad
\qquad
(b) Almost all cells in the body have a nucleus, which contains chromosomes DNA.
(i) Name one type of cell in the human body that does not contain a nucleus.
(ii) In humans, a sperm cell has 23 chromosomes.

Suggest the number of chromosomes that are present in one of the light-sensitive cells in the human eye.
(iii) Outline the function of DNA.
\qquad
\qquad
\qquad

2 Diamonds, sapphires and rubies are found in the Earth's crust and are valua industrial materials and for making jewellery.

(a) Table 2.1 shows the numbers of protons, neutrons and electrons in three atoms, \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

Table 2.1

atom	number of protons	number of neutrons	number of electrons
\mathbf{X}	5	6	5
\mathbf{Y}	6	7	6
\mathbf{Z}	12	12	12

(i) Diamonds are made of the element carbon.

Explain which one of the atoms, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, shown in Table 2.1 is a carbon atom.
atom
explanation \qquad
\qquad
(ii) State the nucleon number (mass number) of atom \mathbf{X} in Table 2.1.
(b) The main compound in sapphires and rubies is aluminium oxide.

Aluminium oxide is an ionic compound.
(i) Aluminium oxide has the chemical formula, $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Explain what this formula means.
\qquad
\qquad
\qquad
(ii) State one way in which an ion differs from an atom.
\qquad
\qquad
(c) Fig. 2.1 shows a simplified diagram of a process which is used to obtain metallic aluminium.

Fig. 2.1
(i) Name the process shown in Fig. 2.1, and state the meaning of the word anode. name of process meaning of anode \qquad
\qquad
(ii) Explain why the mixture containing aluminium oxide in Fig. 2.1 must be kept molten.
\qquad
\qquad
\qquad
(iii) Complete the simple word chemical equation below which describes the main reaction taking place in the process in Fig. 2.1.
aluminium oxide \longrightarrow.................................. +

3 Fig. 3.1 shows a speed-time graph for the performance of an athlete in a race.

Fig. 3.1
(a) Use the graph to describe the motion of the athlete between
(i) B and C , \qquad
(ii) C and D.
(b) Use the graph to calculate the acceleration of the athlete between \mathbf{A} and \mathbf{B}. Show your working.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(c) The athlete runs a distance of 160 m in 25 s .

Calculate the average speed of the athlete.
State the formula that you use and show your working.
formula used
working
m / s
(d) The power output of the athlete is 600 W .

Calculate the amount of work done by the athlete over 5 seconds.
Show your working.
(e) After the race the athlete is sweating. The sweat evaporates from the surface of the athlete's skin.

Describe the process of evaporation in terms of particles.
\qquad
\qquad
\qquad
\qquad

4 (a) Draw lines to link each term to its correct definition.

(b) Table 4.1 shows some information about enzymes found in the human alimentary canal.

Complete the table.
Table 4.1

enzyme	substrate	product
amylase		maltose
	proteins	amino acids
		fatty acids and glycerol

(c) Nutrients such as amino acids and glucose are carried from the alimentary cana
liver. The liver converts any excess amino acids to a nitrogenous waste product.
(i) Name this waste product.
(ii) Name the organs that excrete this waste product.
(iii) The liver converts excess glucose in the blood into glycogen. The glycogen is then stored in cells in the liver. Glycogen is an insoluble substance.

Using your knowledge of osmosis, suggest why liver cells might swell and burst if they stored large quantities of a soluble substance such as glucose.
\qquad
\qquad
\qquad
\qquad
(iv) When body cells need glucose, liver cells convert some of their stored glycogen back into glucose. The cells then release the glucose into the blood.

Explain why body cells need glucose.
\qquad
\qquad

5 (a) Fig. 5.1 shows a 230 V 60 W light bulb.

Fig. 5.1
(i) Explain the meaning of 60 W on the bulb,
\qquad
230 V on the bulb.
(ii) Describe the energy transformations which occur in the light bulb when it has been switched on.
\qquad
\qquad
\qquad
\qquad
(iii) Suggest why the light bulb is filled with an unreactive gas.
\qquad
\qquad

Fig. 5.2
(i) Describe what happens to the current after the bulb is switched on.
\qquad
\qquad
(ii) Use the graph to find the current through the light bulb 80 ms after it is switched on.
(c) (i) A lamp with a resistance of 1000Ω, when lit, is connected in series with lamp with a resistance of 2000Ω, when lit.

Calculate the combined resistance of these two lamps.
State the formula that you use and show your working.
formula
working
(ii) The resistance of a piece of wire depends on a number of variables such as the length of the wire and the material from which it is made.

State two other factors which can affect the resistance of a piece of wire.
1 \qquad
2

6 (a) Table 6.1 shows some properties of three solid elements \mathbf{A}, \mathbf{B} and \mathbf{C}.
Table 6.1

element	density	electrical conductivity	melting point
A	low	high	low
B	low	low	high
C	high	high	high

(i) Suggest and explain which element, A, B or C, has properties that are typical of a non-metal.
element \qquad
explanation \qquad
\qquad
(ii) Suggest and explain which element, A, B or C, has properties that are typical of a transition metal.
element \qquad
explanation \qquad
(b) Components in electrical circuits are often joined by soldering them together.

Solder is an alloy which has a lower melting point than any of the pure metals contains.

Fig. 6.1 shows part of an electrical circuit into which a resistor has been soldered.

Fig. 6.1
(i) One type of solder is an alloy that contains tin, silver and copper.

Describe briefly what must be done to make this solder.
\qquad
\qquad
(ii) Explain why electrical components are joined by soldering rather than by the use of a non-metallic adhesive (glue).
\qquad
\qquad
(c) Fig. 6.2 shows part of an electrical cell which a student is making in a school laboratory.

Fig. 6.2
Complete and label the diagram in Fig. 6.2 to show how the cell should appear when the student has finished.
(d) Catalytic converters are used in modern cars to reduce air pollution.

Fig. 6.3 shows a simplified diagram of a catalytic converter in a car.

Fig. 6.3
(i) Name two gaseous compounds that are produced when a hydrocarbon undergoes complete combustion.

1 \qquad
2 \qquad
(ii) Suggest one other gas in the exhaust gas mixture whose concentration is reduced by the catalytic converter.

7 (a) Fig. 7.1 shows two children playing in a swimming pool.

Fig. 7.1
Child A makes some small waves on the surface of the water.
(i) In 10 seconds, 5 complete waves pass by child \mathbf{B} who is standing in the same pool.

Calculate the frequency of the waves.
Show your working.
\qquad
(ii) Use suitable words to complete the sentences below to describe what waves do.

A wave transfers energy without transferring \qquad .

The energy is transferred in the direction that the wave \qquad .
(iii) Water waves are transverse waves.

Name one example of a longitudinal wave.
(b) The top of a water slide is 10 m above the water in the pool. This is shown in Fig

Fig. 7.2
A boy has a mass of 50 kg .
(i) The gravitational field strength of the Earth is $10 \mathrm{~N} / \mathrm{kg}$.

State the weight of the boy. \qquad
(ii) The boy climbs a vertical distance of 10 m from the pool to the top of the slide.

Calculate the work done in gaining this height.
State the formula that you use and show your working.
formula used
working
\qquad
(iii) The boy slides down to the pool. His speed at the bottom of the slide is 12 m Calculate his kinetic energy at the bottom of the slide. State the formula that you use and show your working. formula used working
\qquad
(c) The water in the swimming pool is heated by the Sun. State the method of heat transfer by which heat from the Sun reaches the Earth.

8 The golden lion tamarin, Leontopithecus rosalia, is a monkey that lives in forests in Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats owls.

(a) (i) State the correct biological term for a two-word Latin name such as Leontopithecus rosalia.
(ii) Suggest an advantage of giving each species of organism a Latin name like this.
\qquad
\qquad
(b) (i) In the space below, use the information provided to construct a food web that includes golden lion tamarins.
(ii) On your food web, draw a circle around one producer.
(c) Golden lion tamarins are important for the dispersal of seeds from many species of tree. They eat the fruits and then egest the seeds in their faeces.

An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 8.1 shows the results of a study in which the distances of the tamarins' faeces from one tree were measured.

Fig. 8.1
(i) Describe the distribution of golden lion tamarin faeces in relation to this tree.
\qquad
\qquad
(ii) Suggest two ways in which the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds.

1 \qquad
\qquad
2 \qquad
\qquad

9 The manufacture of ammonia is an important industrial process.
Fig. 9.1 is a simplified diagram of a reaction vessel which is used to make ammonia.

Fig. 9.1
(a) Ammonia is made by combining nitrogen and hydrogen.
(i) Explain one difference between an element and a compound. You may use these substances as examples.
\qquad
\qquad
\qquad
\qquad
(ii) Describe a chemical test for ammonia gas.
\qquad
\qquad
\qquad
(b) Ammonia is used to make the compound ammonium nitrate. When it is added ammonium nitrate is a useful source of nitrogen for plants. Some of the nitrogen in by plants is combined with other elements to make amino acids.
(i) Explain briefly why nitrogen gas from the air cannot be used directly by most plants.
\qquad
(ii) Suggest a compound that neutralises ammonia to produce ammonium nitrate.
(iii) Name the three other elements which are always combined with nitrogen in amino acids.
\qquad
(iv) Describe briefly what happens to amino acid molecules when they form protein molecules.
\qquad
\qquad
\qquad
(c) The reaction between nitrogen and hydrogen requires an iron catalyst.
(i) State what is meant by the term catalyst.
\qquad
\qquad
\qquad
(ii) State one reason why the catalyst in the reaction in Fig. 9.1 could not be made of the alkali metal sodium.
\qquad
\qquad
The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).
DATA SHEET
The Periodic Table of the

DATA SHEET
The Periodic Table of the Elements

