

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

00 00

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

		www.xtra	apapers.com
		3	
(b)	Alm DN	nost all cells in the body have a nucleus, which contains chromosomes mA.	Cambriner's
	(i)	Name one type of cell in the human body that does not contain a nucleus.	'dec.
			[1] 9 77
	(ii)	In humans, a sperm cell has 23 chromosomes.	
		Suggest the number of chromosomes that are present in one of the light-sensitive cells in the human eye.	/e
			[1]
	(iii)	Outline the function of DNA.	
			[2]

- 4
- www.papacambridge.com 2 Diamonds, sapphires and rubies are found in the Earth's crust and are valua industrial materials and for making jewellery.

- (a) Table 2.1 shows the numbers of protons, neutrons and electrons in three atoms, X, Y and Z.

Table 2	2.1
---------	-----

atom	number of protons	number of neutrons	number of electrons
X	5	6	5
Y	6	7	6
Z	12	12	12

(i) Diamonds are made of the element carbon.

Explain which one of the atoms, **X**, **Y** or **Z**, shown in Table 2.1 is a carbon atom.

atom ,.... explanation [1] (ii) State the nucleon number (mass number) of atom X in Table 2.1. [1]

(b) The main compound in sapphires and rubies is aluminium oxide.

Aluminium oxide is an ionic compound.

(i) Aluminium oxide has the chemical formula, Al_2O_3 .

Explain what this formula means.

..... [2]

	www.xtrapa
	7 The power output of the athlete is 600 W. Calculate the amount of work done by the athlete over 5 seconds. Show your working.
(d)	The power output of the athlete is 600 W.
	Calculate the amount of work done by the athlete over 5 seconds.
	Show your working.
	J [2]
(e)	After the race the athlete is sweating. The sweat evaporates from the surface of the athlete's skin.
	Describe the process of evaporation in terms of particles.
	[2]

(b) Table 4.1 shows some information about enzymes found in the human alimentary canal.

Complete the table.

Table 4.1

enzyme	substrate	product
amylase		maltose
	proteins	amino acids
		fatty acids and glycerol

[4]

		www.xtrapapers	3.0
		9	
(c)		9 trients such as amino acids and glucose are carried from the alimentary cana r. The liver converts any excess amino acids to a nitrogenous waste product. Name this waste product. [1] Name the organs that excrete this waste product.	or viner's
	(i)	Name this waste product. [1]	0.0
	(ii)	Name the organs that excrete this waste product.	·0,
		[1]	
	(iii)	The liver converts excess glucose in the blood into glycogen. The glycogen is then stored in cells in the liver. Glycogen is an insoluble substance.	
		Using your knowledge of osmosis, suggest why liver cells might swell and burst if they stored large quantities of a soluble substance such as glucose.	
		[2]	
	(iv)	When body cells need glucose, liver cells convert some of their stored glycogen back into glucose. The cells then release the glucose into the blood.	
		Explain why body cells need glucose.	
		[2]	

5	(a) Fi	10 ig. 5.1 shows a 230 V 60 W light bulb. 230 V 60 W tungsten filament unreactive gas filling bulb glass bulb	For iner's
		Fig. 5.1	
	(i) Explain the meaning of	
		60W on the bulb,	
		230 V on the bulb.	1
	(11		-
		[3]
	(111) Suggest why the light bulb is filled with an unreactive gas.	
		[1]

(i) Describe what happens to the current after the bulb is switched on.

[2]

(ii) Use the graph to find the current through the light bulb 80 ms after it is switched on.

A [1]

12 (c) (i) A lamp with a resistance of 1000 Ω, when lit, is connected in series with a resistance of 2000 Ω, when lit. Colculate the combined resistance of these two lamps.

formula

working

Ω [2]

(ii) The resistance of a piece of wire depends on a number of variables such as the length of the wire and the material from which it is made.

State two other factors which can affect the resistance of a piece of wire.

1	
2	

[2]

BLANK PAGE

Please turn over for Question 6.

(a) Table 6.1 shows some properties of three solid elements A, B and C. 6

abl	e 6.1 shows some	1 e properties of three Table 6		and C.	For iner's
	element	density	electrical conductivity	melting point	Se.con.
	Α	low	high	low	
	В	low	low	high	
	С	high	high	high	

(i) Suggest and explain which element, A, B or C, has properties that are typical of a non-metal.

	element
	explanation
	[1]
(ii)	Suggest and explain which element, A , B or C , has properties that are typical of a transition metal.
	element
	explanation
	[1]

Www.PapaCambridge.com 15 (b) Components in electrical circuits are often joined by soldering them together. Solder is an alloy which has a lower melting point than any of the pure metals contains. Fig. 6.1 shows part of an electrical circuit into which a resistor has been soldered. resistor plastic circuit board metal connecting strip solder Fig. 6.1 (i) One type of solder is an alloy that contains tin, silver and copper. Describe briefly what must be done to make this solder.[1] (ii) Explain why electrical components are joined by soldering rather than by the use of a non-metallic adhesive (glue). [1] (c) Fig. 6.2 shows part of an electrical cell which a student is making in a school laboratory. voltmeter

Fig. 6.2

Complete and label the diagram in Fig. 6.2 to show how the cell should appear when the student has finished. [3]

(c) The water in the swimming pool is heated by the Sun.

State the method of heat transfer by which heat from the Sun reaches the Earth.

[1]

www.papaCambridge.com 8 The golden lion tamarin, Leontopithecus rosalia, is a monkey that lives in forests in Its diet includes fruits and nectar from trees. Its predators include snakes, bamboo rats owls.

(a) (i) State the correct biological term for a two-word Latin name such as *Leontopithecus* rosalia.

......[1]

(ii) Suggest an advantage of giving each species of organism a Latin name like this.

..... [1]

(b) (i) In the space below, use the information provided to construct a food web that includes golden lion tamarins.

(ii) On your food web, draw a circle around **one** producer.

[3]

[1]

(c) Golden lion tamarins are important for the dispersal of seeds from many species of tree. They eat the fruits and then egest the seeds in their faeces.

www.papaCambridge.com An investigation was carried out into the distances that golden lion tamarins dispersed seeds from trees.

Fig. 8.1 shows the results of a study in which the distances of the tamarins' faeces from one tree were measured.

Fig. 8.1

(i) Describe the distribution of golden lion tamarin faeces in relation to this tree.

[2] (ii) Suggest two ways in which the dispersal of seeds away from the tree, in golden lion tamarin faeces, could benefit the young plants that grow from the seeds. 1 2 [2]

9 The manufacture of ammonia is an important industrial process.

monia. Fig. 9.1 is a simplified diagram of a reaction vessel which is used to make ammonia.

- (a) Ammonia is made by combining nitrogen and hydrogen.
 - (i) Explain one difference between an element and a compound. You may use these substances as examples.

..... [2] (ii) Describe a chemical test for ammonia gas. [2]

		www.xtrap	apers.c
		23	
(b)	amı	23 monia is used to make the compound ammonium nitrate. When it is added monium nitrate is a useful source of nitrogen for plants. Some of the nitrogen to by plants is combined with other elements to make amino acids. Explain briefly why nitrogen gas from the air cannot be used directly by most plants.	For iner!
	(i)	Explain briefly why nitrogen gas from the air cannot be used directly by most plants.	Se.co
		[1]	
	(ii)	Suggest a compound that neutralises ammonia to produce ammonium nitrate.	
		[1]	
	(iii)	Name the three other elements which are always combined with nitrogen in amino acids.	
		[2]	
	(iv)	Describe briefly what happens to amino acid molecules when they form protein molecules.	
		[2]	
(c)	The	e reaction between nitrogen and hydrogen requires an iron catalyst.	
	(i)	State what is meant by the term catalyst.	
		[2]	
	(ii)	State one reason why the catalyst in the reaction in Fig. 9.1 could not be made of the alkali metal sodium.	
		[1]	

				24		Min 20 Min 20 Min 20 Min 103 Min 10
	0	4 Helium	20 Neon Argon		Radon 175	The series of th
		™ 1 [™]	9 9	36	8	abited a state of the state of
	١١٨		Pluorine 9 35.5 C C		82 9	A Vaterburn 102 Nobelium 102 Nobelium
	>		16 Oxygen 32 32 34 Utur	79 Selenium 34 128 128 52 52	Polonium 84 169	Mendelevuum 101
	>		Nitrogen 7 7 31 Phosphorus 15	75 AS Arsenic 33 Antimony 51 Antimony 51 Antimony	Bismuth 83 167	68 E 100 ¹ F
	\geq		6 Carbon 6 Saltoon 28 Silicon	73 Germanium 32 119 50 Tin 50 707	165 Lead	Holmium 67 Einsteinum 99 (r.t.p.).
	≡		11 B 5 80ron 5 27 A1 13	70 Ga 31 115 115 115 149 164ium 204 T	Thailum 81 162	CePrNdPmSmEuCdTbDyHoParaeodyniumNeodyniumNeodyniumNeodyniumSamariumEuropiumEuropiumEuropiumEuropiumDyHo23223800000000007hhPaa0NppNp000000010Paraeodynium00Np00000011hPaa00Np000000011hPaa0000000000011hPoraetinum0000000000011hVolume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).000000
2				B5 20 20 20 20 20 20 20 20 20 20 20 20 20		BK BF BR Bretelium 97 Eture and p
Group				64 64 108 108 108 108 108 108 108 107 107 107 107 107 107 108 108 108 108 108 108 108 108 108 108		ed Gadolinium 64 Cardium 96 Curtum 96 Curtum
				28 Neckel 106 A 195 A	_	m ³ at room
Group				59 C Cobait T 103 192 T	150	samarium 62 9 9 9 9 9 9 9 9 9 9 9 9 9 8 10 10 10 10 10 10 10 10 10 10 10 10 10
		Hydrogen		56 Iron 101 101 190 46 49	S Comium 77	e of any gas is
				55 Manganese 26 186 An Manganese 26 43 An An An An An An An An An An An An An	144	Neodymium Perform 60 238 61 92 Unanum 9 8 92 93 9 9
				Cr Cr Cr Cr Crhomum Ma 24 08 86 86 86 86 86 184 184 184 184 43 186 186 86 86 86 86 86 86 86 86 86 86 86 86 8	<u>с</u>	Praeodymium Nei 59 60 91 actinum 92 U 92 U 92 U 92 U
						e volum
				51 Vanacium 23 93 93 93 41 Nicobium	Tantalum 73	80 J 80 J
				48 14 91 178 178 178	2	bol bol numbeı
				45 Seandium 21 89 89 89 89 89 139 139	e	l series a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Beeylium 4 24 Mg Magnesium	A 40 44 40 Calcium 20 Calcium 28 88 28 Strentium 38 51 137 137 137 137 137 137 137 137 137 13	56 Barium 56 226 226 Radium 88 Radium	Key $\begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a \\ b \end{bmatrix}$ $\begin{bmatrix} a \\ b \\ b \end{bmatrix}$ $\begin{bmatrix} a \\ c \\$
	_		23 23 23 23 23 23 23 23 23 23 23 23 23 2	7 7 7 7 37 7 7 37 7 7 37 7 37 7 37 7 39 7 39 7 39 7 39 7 39 7 39 7 39 7 39 7 19 19 19 19 19 19 19 19	55 Caesium 5 56 Fr 55 Francium 8 87 Francium 8 50 71 - 07	700-1 Lat 190-103 Ac

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of