

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total		

This document consists of 21 printed pages and 3 blank pages.

1 Fig. 1.1 shows five insects.

Fig. 1.1

(a) Use the key below to identify each insect. Fill in the table to show how you arrived at your identifications. The first one has been done for you.

2

1a	has wings	go to 2
b	does not have wings	go to 3
2a	wings are covered	go to 4
b	wings are not covered	<i>Musca</i>
3a	head longer than front leg	Termes
b	head shorter than front leg	Formica

4astriped pattern on wing coveringsGraphosomabspots on wing coveringsCoccinella

incost	•	1		2		3		4	namo
Insect	а	b	а	b	а	b	а	b	name
Α	\checkmark			\checkmark					Musca
В									
С									
D									
E									

For iner's

		www.xtra	apa
		3 3 N. D	
(b)	The <i>Mu</i>	common name for insect A is housefly. The complete binomial of insection and the second sec	Can
	Sug con	gest why scientists may prefer to use the binomial of an insect, rather than i mon name.	its
			[1]
(c)	Hou inso dige	useflies feed by spitting saliva onto food, such as meat. Enzymes in the saliva tu pluble substances into soluble ones. The flies can then suck the liquid into the estive system.	rn eir
	(i)	Suggest one enzyme in a housefly's saliva that could digest a substance in meat.	
			[1]
	(ii)	State the soluble product or products that this enzyme would produce.	
			[1]
(d)	Hou on t	useflies spread diseases such as typhoid fever. They leave harmful microorganisn food that will later be eaten by a person.	ns
	(i)	Name the cells in the human body that can help to prevent microorganish causing infections.	ns
			[1]
	(ii)	Pesticides are sometimes used to kill houseflies and therefore reduce the risk spreading disease.	of
		Give one reason why pesticides should not be used more than necessary.	
			[1]
(e)	Wh	en a housefly flies, its wings produce a buzzing sound.	
	(i)	Suggest how a movement such as that of a fly's wings produces sound.	
			[2]

Www.PapaCambridge.com 5 2 (a) Fig. 2.1 shows an aircraft moving along a runway. (i) Draw and label arrows on Fig. 2.1 to show the directions of the driving and friction forces acting on the aircraft. runway 00 Fig. 2.1 (ii) The driving and friction forces are balanced. Explain what is meant by the phrase forces are balanced. [1] (iii) Describe the movement of the aircraft when these forces are balanced. [1] (b) People who fly frequently have greater exposure to ionising radiation than those who do not fly. (i) Explain why exposure to ionising radiation may be harmful. [2] (ii) This ionising radiation is cosmic radiation from outer space. This is one source of background radiation. State **one** other natural source of background radiation. [1]

(c) The aircraft is able to navigate using radar. This involves using microwaves. The part of the electromagnetic spectrum.

Name one other wave which is part of the electromagnetic spectrum and give a use for this radiation.

(d) Potato snacks are packed in airtight packets and filled with nitrogen gas at atmospheric pressure.

(i) Suggest why nitrogen gas is used rather than air.

..... [2]

(ii) A passenger has a packet of potato snacks in his hand luggage on the aircraft. During the flight, the aircraft cabin is at a pressure less than normal atmospheric pressure.

The passenger notices that the packet has expanded.

State why this happens.

..... [1]

	7	
lydroc	arbons are compounds which contain only the elements hydrogen and carbon	Co
a) (i)	State the number of electrons in the outer shell of a carbon atom.	[1]
(ii)	Another element, X , has atoms whose nuclei contain 14 protons.	
	Name element \mathbf{X} and explain whether or not atoms of \mathbf{X} have the same number outer electrons as a carbon atom.	of
	name of element X	
	explanation	
		[2]
(iii)	Name the least reactive element which is in the same period of the Periodic Tal as carbon.	ble
		[1]
~,	e simplest hydrocarbon is methane which is an important gaseous idel.	
(i)	State two natural sources of methane.	
(i)	State two natural sources of methane.	[2]
(i) (ii)	State two natural sources of methane.	[2] he
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. 	[2] he:
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. 	[2] he
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. B The reaction is exothermic and has a very high rate. 	[2] he:
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. B The reaction is exothermic and has a very high rate. C The reaction is exothermic and has a very low rate. 	[2] he
(i) (ii)	 State two natural sources of methane. 1	[2] he
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. B The reaction is exothermic and has a very high rate. D The reaction is endothermic and has a very low rate. sentence 	[2] he
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. B The reaction is exothermic and has a very high rate. C The reaction is endothermic and has a very low rate. D The reaction is endothermic and has a very low rate. 	[2] he
(i) (ii)	 State two natural sources of methane. 1 2 A fuel such as methane combines with oxygen in a chemical reaction. When the reaction is occurring, a large amount of heat is given off each second. Suggest and explain which one of the sentences, A to D, accurately describes the reaction between a typical fuel and oxygen. A The reaction is endothermic and has a very high rate. B The reaction is exothermic and has a very high rate. C The reaction is endothermic and has a very low rate. D The reaction is endothermic and has a very low rate. sentence explanation 	[2] he

- WWW. PapaCambridge.com (c) Some types of oil and grease contain hydrocarbons. Oil and grease stick to cloth make them look dirty. Washing with water alone does not remove oil and grease clothes.
 - (i) State the type of substance which could be added to water so that washing does remove oil and grease.
 - [1]
 - (ii) Suggest one possible disadvantage, other than cost, of using large amounts of the substance given in answer (c)(i) over a long period of time.

[1]

BLANK PAGE

Please turn over for Question 4.

4 Yaks are animals that live in the cold mountainous region of the Himalayas.

Fig. 4.1 shows a yak.

Fig. 4.1

(a) Explain how the long hair of the yak keeps it warm during the cold weather.

[2]

(b) Yaks are used as 'beasts of burden'. They can be ridden or used to carry or pull heavy objects.

A yak of mass 1000 kg is carrying a load of 80 kg.

(i) Calculate the combined weight of the yak and load.

The Earth's gravitational field strength is 10 N/kg.

......N [1]

www.papacambridge.com

10

BLANK PAGE

Please turn over for Question 5.

- (b) The flowers of plant **Q** are pollinated by insects.
 - (i) State **one** feature, visible on Fig. 5.1, that would attract insects to the flowers.
 - [1]

	www.xtra	papers.com
	15	
(ii)	After pollination, fertilisation takes place in the flower.	For
	Describe what happens during fertilisation.	ibrid
		Se.con
	[2	2]
(iii)	Name the part of the flower that would develop into a fruit, following fertilisation.	
	[1]
(iv)	What structures are present inside all fruits?	
	[1]
(c) Far	mers often add fertilisers containing nitrates to the soil where they grow crops.	
(i)	Explain why this is done.	
	[2	2]
(ii)	Explain why fields in which plant Q is growing will require less nitrate fertiliser that fields in which plant P is growing.	n
	[2	2]

16

For iner's

6 Nordic gold is an alloy of four metals used to make coins.

Table 6.1 shows information about the metals contained in Nordic gold.

metal	% by mass in Nordic gold
aluminium	5
copper	
tin	1
zinc	5

(a) (i)	Complete Table 6.1 by stating the percentage of copper in Nordic gold. [1]
(i	i)	Suggest how Nordic gold could be made.
		[1]
(ii	i)	Nordic gold has properties which make it suitable for making coins.
		Suggest one property Nordic gold is likely to have, other than its appearance, that makes it suitable for making coins.
		Explain briefly why this property is important.
		property
		importance
		[2]
(b) (i)	Tin may be extracted from tin oxide by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide.
		Write a word chemical equation for this reaction.
		[1]

		www.xtrapa	apers.
		17	
	(ii)	State and explain which substance is oxidised when tin is extracted from tin	For
		substance which is oxidised	bride
		explanation	Se.C
(c)	Alu is a	minium is extracted from aluminium oxide, Al_2O_3 , by electrolysis. Aluminium oxide in ionic compound.	
	(i)	Explain the meanings of the following terms.	
		cathode	
		electrolyte	
		[2]	
	(ii)	Describe briefly the change in electronic structure which occurs when an aluminium atom becomes an aluminium ion .	
		[1]	
	(iii)	Calculate the number of oxide ions which will be combined with 10 aluminium ions in aluminium oxide.	
		[1]	
(d)	Zin effe	c oxide is a white solid used in sunscreen to protect human skin from the harmful acts of ultraviolet light from the sun.	
	(i)	In a typical sunscreen, tiny pieces of zinc oxide are dispersed in a liquid.	
		Name the type of mixture in which a solid is dispersed in a liquid.	
		[1]	
	(ii)	Suggest why a sunscreen is able to protect human skin from ultraviolet light.	
		[1]	

		www.xtr	apapers.co
		18	
Mos	st ce	Ils obtain energy from carbohydrates and other nutrients by aerobic respiratio	For .
(a)	Des	scribe how a cell in a human muscle obtains the oxygen that it needs for respiratio	nbrid, mer's
			N
			[2]
(b)	Wh mov	en a person carries out exercise, muscle cells use energy to contract and produce vement.	ce
	(i)	State two uses of energy in the human body, other than the contraction muscles.	of
		1	
		2	[2]
	(ii)	Some of the energy in exercising muscles is released as heat. Sweating helps prevent the internal body temperature from rising too high.	to
		State the correct biological term for the maintenance of a constant internenvironment.	al
			[1]
	(iii)	Suggest why an athlete running a long race, such as a marathon, needs to driftluids during the run.	nk
			[2]
(c)	Reg	gular exercise can help to reduce the risk of having a heart attack.	
	Des	scribe the events that lead to a heart attack.	
			[0]

BLANK PAGE

Please turn over for Question 8.

Www.papacambridge.com Fig. 8.1 shows the inside of a refrigerator. The temperature inside the freezing comparison 8 is -20 °C and the temperature in the rest of the refrigerator is +5 °C.

(a) (i) Draw arrows on Fig. 8.1 to show what happens to the air cooled by the freezing compartment. [1] [1] (ii) Name this method of heat transfer. (iii) Explain why this happens, using the idea of density.[1]

(b) Fig. 8.2 shows an ice cube with sides of 2 cm. The ice cube has a mass of 7.4 g.

Fig. 8.2

(i) Calculate the density of the ice.

State the formula that you use and show your working. State the units of your answer.

formula used

working

[3]

(ii) The ice cube has been made by freezing some water.

Draw diagrams to show the arrangement of water molecules in solid ice and liquid water. One molecule has been drawn for you in each box.

- (c) The refrigerator has a lamp inside. The supply voltage is 250 V and the current passing through the lamp when lit is 0.05 A.
 - (i) Show that the resistance of the lamp when lit is 5000Ω .

State the formula that you use and show your working.

formula used

working

		[2]
(ii)	Two lamps with a resistance of 5000Ω are connected together in series.	
	Calculate the combined resistance of the two lamps.	
	State the formula that you use and show your working.	
	formula used	
	working	

[2]

21

- Coral reefs are large rocky structures found in shallow seawater. The reefs are forma 9 the skeletons of small animals (coral polyps).
- Www.PapaCambridge.com (a) Seawater is a mixture which contains many dissolved compounds. The coral polyps extract the compound calcium carbonate from seawater and use it to build their skeletons.

Choose **two** statements from the list below that describe compounds but which do **not** describe mixtures.

- They have a chemical formula. Α
- В They can contain any amounts of two or more substances.
- С Their properties are different from those of the substances used to make them.
- D Their formation does **not** normally produce a significant change in temperature.

and statements [2]

(b) Certain algae (microscopic plants) live in the coral polyps, and these organisms help each other to survive.

The algae produce oxygen in the presence of sunlight. The coral polyps use oxygen and produce carbon dioxide as a waste product.

(i) Name the processes which are occurring

in the algae to produce oxygen,

in the coral polyps to produce carbon dioxide.

[2]

(ii) Name the compound which is produced by the algae in addition to oxygen.

[1]

www.papaCambridge.com 23 (iii) Suggest one way that the coral polyps and the algae help each other to surv (c) In recent years, the amount of carbon dioxide in the atmosphere has increased. This has caused a decrease in the average pH of seawater. During this period, many coral reefs have become damaged or have stopped growing. (i) State and explain one example of human activity which has caused the amount of carbon dioxide in the atmosphere to increase in recent years. (ii) Explain why increased levels of carbon dioxide in the atmosphere cause the average pH of seawater to decrease. [2] (iii) Suggest a possible reason why a decrease in the average pH of seawater could damage coral reefs. [1]

													2	24												-	22	w 22.	AL OSO	ra	ap	ар	er	5.C	0
	C	,	⁴ Helium	۲	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	кадол 86				175	Lu	Lutetium 71		ב	103		20	10.	76	ž		
	ΠΛ				19	L	Fluorine 9	35.5	CI	Chlorine 17	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85				173	Υb	Ytterbium 70		No	102					da	0.00	1
	N	:			16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Po	Polonium 84				169	۲ ۲	1hulium 69		Md	101							
	>				14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	83 83				167	٦ Ľ	Erbium 68		E L	100							
	2				12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb B	82 Lead				165	Р	Holmium 67		Es	66	(r.t.p.).						
	=				1	ш	5 Boron	27	٩ı	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	T 1	81				162	Dy	Dysprosium 66		ני	98	pressure						
ents											65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Tb	lerbium 65		BK	97	ature and						
e Eleme											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	79 79				157	Gd	Gadolinium 64		E C	96	n tempera						
ble of th	2										59	ïz	Nickel 28	106	Pd	Palladium 46	195	Pt B	78 78				152	Eu	Europium 63		Am	95	n ³ at roon						
iodic Ta Gro	5										59	°	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Sm	Samarium 62		Pu	94	s is 24 dn						
The Per			Hydrogen	_							56	Fe	lron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76					Pm	Promethium 61		dN	93	of any ga						
											55	Mn	Manganese 25		ЦС	Technetium 43	186	Re	Khenium 75				144	Nd	Neodymium 60	238	D	92	one mole						
											52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	8	1 ungsten 74				141	Pr.	Praseodymium 59		Pa	91	olume of c						
											51	>	Vanadium 23	93	ЧN	Niobium 41	181	Ta	amaum 73				140	Ce Ce	Cerium 58	232	٩L	06	The vo						
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Hf	Hamium 72							nic mass	log	nic) number							
				-				1			45	Sc	Scandium 21	68	≻	Yttrium 39	139	La	57 *	227	Ac	Actinium 89 †	00:00	eries		= relative aton	= atomic sym	= proton (aton							
	=	•			6	Be	Benyllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	56 56	226	Ra	Radium 88	hinned to v	Actinoid su		а ,	×	"q							
	_	-			7		Lithium	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	caesium 55		Ľ	Francium 37	2 1 1 2	90-103 / 90-103 /			ey	٩							

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of