

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

 A copy of the Periodic Table is printed on page 24.
 For Examine

 At the end of the examination, fasten all your work securely together.
 1

 The number of marks is given in brackets [] at the end of each question or part question.
 2

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 22 printed pages and 2 blank pages.

1 Houseflies are common insect pests. Fig. 1.1 shows a housefly.

Fig. 1.1

- (a) On Fig. 1.1, label and name **two** features that are characteristic of insects.
- (b) Houseflies feed by spitting saliva onto food, such as meat. Enzymes in the saliva turn insoluble substances into soluble ones. The flies can then suck up the liquid into their digestive system.
 - (i) Suggest one enzyme in a housefly's saliva that could digest a substance in meat.

.....[1]

.....

Www.papaCambridge.com

[2]

[1]

(ii) State the soluble product or products that this enzyme would produce.

(c) Houseflies spread diseases such as typhoid fever. They leave harmful microorganisms on food that will later be eaten by a person.

Describe **two** ways in which white blood cells can destroy microorganisms that have entered a person's body.

1 _____ 2 _____ [2]

- (d) When a housefly flies, its wings produce a buzzing sound.
 - (i) Suggest how a movement such as that of a fly's wings produces sound.

4

For iner's

2 Nordic gold is an alloy of four metals used to make coins.

Table 2.1 shows information about the metals contained in Nordic gold.

Table 2.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al ₂ O ₃
copper	89	CuFeS ₂
tin	1	SnO ₂
zinc	5	ZnS

(a) Nordic gold has properties which make it suitable for making coins.

Suggest **one** property Nordic gold is likely to have, other than its appearance, that makes it suitable for making coins.

Explain briefly why this property is important.

property	
importance	
	[2]

- (b) The method used to extract a metal from its compounds depends on the reactivity of the metal.
 - (i) Tin may be extracted from tin oxide, SnO₂, by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide, CO.

Construct a balanced, symbolic equation for this reaction.

	5	
(ii)	When aluminium oxide is heated with carbon, no reaction occurs.	For
	Explain why it is possible to extract tin but not aluminium by heating their oxide with carbon.	ridge.
	[2]	
(iii)	Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis.	
	Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis.	
	[3]	

(c) A coin made of Nordic gold has a mass of 7.80 g.

Calculate the number of moles of copper in the coin.

Show your working.

trapapers.com

[2]

.....

3 Yaks are animals that live in the cold mountainous region of the Himalayas.

Fig. 3.1 shows a yak.

Fig. 3.1

(a) Explain how the long hair of the yak keeps it warm during the cold weather.

[2]

(b) Yaks are used as 'beasts of burden'. They can be ridden or used to carry or pull heavy objects.

A yak of mass 1000 kg is carrying a load of 80 kg.

(i) The yak carries its load up a mountain slope and finishes 100 m higher up the mountain.

Calculate the work done gaining this height.

The Earth's gravitational field strength is 10 N/kg.

State the formula that you use and show your working.

formula used

working

[3]

Www.PapaCambridge.com

(ii) While the yak is carrying the load, it travels at a speed of 0.2 m/s.
 Calculate the kinetic energy of the yak and its load at this time.
 State the formula that you use and show your working.
 formula used

working

[2]

For iner's

(c) A yak has a mass of 1000 kg. It has four feet, each of area 300 cm².Calculate the average pressure that the yak exerts on the ground.

State the formula that you use and show your working.

formula used

working

[3]

BLANK PAGE

(b) Ta C a	ble 4.1 show and D .	10 s the displayed formulae and boiling points o	f four hydrocarbons	For iner's
		Table 4.1		stidde.c
		displayed formula	boiling point/°C	911
	Α	H H H H H H H-C-C-C-C-C-C-H H H H H H H	69	
	В	Н Н Н Н H—С—С—С—С—Н H Н Н Н	-0.5	
	С	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-6.3	
	D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63	

(i) Name the **two** homologous series to which the hydrocarbons in Table 4.1 belong.

and	[1	1]
	•••••••••••••••••••••••••••••••••••••••	_

(ii) Use the information in Table 4.1 to suggest one way in which the boiling point of a hydrocarbon is affected by its molecular structure.

..... [2] (iii) A bottle contains a colourless liquid which is thought to be either hydrocarbon

arbon A For identify which have been arbon A solution of the s Describe a chemical test, and its result, which could be used to identify which hydrocarbon is in the bottle.

Explain your choice of test.

..... [3]

- Fig. 5.1
- (a) Describe what would happen in a flower of plant **Q** after pollination, in order to form a fruit.

[4]

		www.xtra	papers.coi
		13	
(b)	Far	mers often add fertilisers containing nitrates to the soil where they grow crops	For
	(i)	Explain why this is done.	ibride
			Se.com
		[2	2]
	(ii)	Explain why fields in which plant Q is growing would require less nitrate fertilise than fields in which plant P is growing.	r
			2]
	(iii)	Explain why using large amounts of nitrate fertiliser near a river could cause harn to the environment.	ו ו
		[3	3]

Www.papacambridge.com Fig. 6.1 shows the inside of a refrigerator. The temperature inside the freezing comparison 6 is -20 °C and the temperature in the rest of the refrigerator is +5 °C.

Fig. 6.1

- (a) (i) Draw arrows on Fig. 6.1 to show what happens to the air cooled by the freezing compartment. [1]
 - (ii) Explain, with reference to air particles, why this happens.

..... [2]

(b) Ice is formed in the freezer when water freezes.

Draw diagrams to show the arrangement of water molecules in solid ice and in liquid water. One molecule has been drawn for you in each box.

solid ice

liquid water

www.papaCambridge.com (c) A steel spoon of mass 0.05 kg is moved from the freezing compartment to the in the fridge. The specific heating capacity of steel is 450 J/kg °C.

Calculate how much heat energy is needed to warm the spoon from -20 °C to +5 °C.

State the formula that you use and show your working.

formula used

working

[3]

- (d) The refrigerator has two identical lamps. The supply voltage is 250 V and the current passing through each lamp when lit is 0.05A.
 - (i) Show that the resistance of one lamp when lit is 5000Ω .

State the formula that you use and show your working.

formula used

working

[1]

(ii) The lamps are connected together in parallel.

Calculate the combined resistance of the two lamps.

State the formula that you use and show your working.

formula used

working

[3]

etons o s place. e surrounding skeleton. mestone rocks Coral reefs are made of living individuals (coral polyps) on top of the skeletons 7 corals. When a coral polyp dies, its skeleton remains and a new polyp takes its place. (a) The coral polyp takes in calcium ions and carbonate ions from the surrounding seawater to produce calcium carbonate, CaCO₃, which it uses to build its skeleton. (i) Some of the calcium ions present in seawater were once part of limestone rocks on the Earth's surface.

Describe one sequence of natural, physical processes which is involved in moving calcium ions from limestone to the sea.

	[3]
(ii)	Some of the carbonate ions present in seawater are formed when carbon dioxide from the air dissolves and reacts.
	State two processes that add carbon dioxide to the atmosphere.
	1
	2 [2]
(iii)	Some ships have been seriously damaged when they have collided with coral reefs.
(iii)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.
(iii)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.
(iii)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.
(111)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.
(111)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.
(111)	Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral reef.

16

	www.xtra	papers.com
	17	
Coi org	ral polyps and certain algae (microscopic plants) live closely together and anisms help each other to survive.	For iner's
The poly	e algae in the coral polyps produce oxygen in the presence of sunlight. The cora yps produce carbon dioxide as a waste product.	Age con
	algae coral polyp	
(i)	Name the process, occurring in the algae, that produces oxygen.	
(ii)	Underline one of the formulae below which represents a compound also formed by the process in (i) .	y
	C_2H_6 $C_2H_5O_2N$ $C_6H_{12}O_6$ CO	
	Name the compound you have underlined. [2	2]
(iii)	Explain briefly why it is beneficial for the coral polyps and the algae to live closely together.	y
	21	
	۲ <u>۲</u>	L.

www.papacambridge.com 18 (c) In recent years, the amount of carbon dioxide in the atmosphere has increase has contributed to a decrease in the average pH of seawater. During this period, the growth rate of many coral reefs has significantly decreased, and many others are no longer part of a successful ecosystem. (i) Explain why increased levels of carbon dioxide in the atmosphere cause the average pH of seawater to decrease. [2] (ii) Suggest a possible reason why a decrease in the average pH of seawater could damage coral reefs. [1]

BLANK PAGE

Please turn over for Question 8.

20

- Most cells obtain energy from carbohydrates and other nutrients by aerobic respiration 8
 - (a) Describe how a cell in a human muscle obtains the oxygen that it needs for respiration

www.papaCambridge.com [2]

(b) When a person runs, muscles generate heat energy which increases the body temperature. Body temperature can be lowered by sweating. Sweat contains potassium ions, sodium ions and chloride ions dissolved in water.

The core temperature of an athlete was measured as she ran steadily for 120 minutes, drinking no fluids while running. She repeated the run the next day but this time drank fluids throughout the run. The environmental temperature and humidity were the same on both days.

The results are shown in Fig. 8.1.

	www.kitapa
	21
(ii)	Compare the body temperature of the athlete when she ran without drinking to her body temperature when she ran while drinking fluids.
	[2]
(iii)	Suggest an explanation for the differences you have described in (ii).
	[2]
(iv)	During a long run, athletes prefer to drink fluids containing glucose, potassium ions, sodium ions and chloride ions rather than pure water.
	Suggest how this can help them to perform better.
	[2]

	www.xtrap
	22
(a)	An aircraft has a mass of 400 000 kg. It has four engines each capable of producer maximum force of 300 000 N.
	Calculate the maximum acceleration of the aircraft.
	State the formula that you use and show your working.
	formula used
	working
	[3]
(b)	People who fly frequently have greater exposure to ionising radiation than those who do not fly.
	Explain why exposure to ionising radiation can be harmful.
	[2]
(c)	Potato snacks are packed in airtight packets and filled with nitrogen gas at atmospheric pressure.
	Snacks
	(i) Suggest why nitrogen gas is used, rather than air.

on the a atmospine of the component of t 23 (ii) A passenger has a packet of potato snacks in his hand luggage on the During the flight, the aircraft cabin is at a pressure less than normal atmospheric pressure. The passenger notices that the packet has expanded. Explain, in terms of particles, why this happens.

[3]

						2	24				WWW.	xtrapapers.co
	0	⁴ Helium	20 N	Neon 10	40 Ar 18	84 Krypton 36	131 Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrencium 103	aCannon.
The Periodic Table of the Elements Group	١١٨		6 F	- Fluorine 9	35.5 C1 17 Chlorine	80 Br 35 35	127 I fodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102	13ge.co
	N	-	95 O	Oxygen 8	32 Sulfur 16	79 Se Selenium 34	128 Te llurium 52	Polonium 84		169 Thulium 69	Md Mendelevium 101	
	>		4 Z	Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83		167 Er Erbium 68	Fermium 100	
	\geq		C 12	Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn 50	207 Pb Lead		165 HO Holmium 67	Ernsteinium 99	(r.t.p.).
	≡		≂ ¤	5 Boron	27 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81		162 Dy Dysprosium 66	Californium 98	pressure
						65 Zn 30 ^{Zinc}	112 Cd Cadmium 48	201 Hg ^{Mercury} 80		159 Tb Terbium 65	BK Berkelium 97	ature and
						64 Copper 29	108 Ag Silver	197 Au Gold 79		157 Gd Gadolinium 64	ecurium 96	n temper
	-					59 Nickel 28	106 Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95	m³ at rooi
			1			59 Cobalt 27	103 Rhodium 45	192 I r Iridium 77		150 Sm Samarium 62	Putonium 94	as is 24 d
		+ Hydrogen				56 F e Iron	101 Ruthenium 44	190 OS Osmium 76		Promethium 61	Neptunium 93	of any g
						55 Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60	238 Uranium 92	one mole
						52 Chromium 24	96 Mo Molybdenum 42	184 V Tungsten 74		141 Pr Fraseodymium 59	Protactinium 91	olume of
						51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Thorium 90	The v
						48 Ttanium 22	91 Zr Zirconium 40	178 Hafnium 72	L-	1	mic mass nbol mic) number	
		-	[45 Scandium 21	89 Xitrium 39	139 Lanthanum 57 *	227 Actinium 89	d series series	 = relative ato = atomic syn = proton (ator 	
	=	_	° a	Beryllium 4	24 Ng Magnesium 12	40 Ca cakium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88	anthanoic Actinoid s	• × a	
	-		2	Lithium	23 Na Sodium	Potassium Potassium	85 Rb Rubidium 37	133 CS Caesium 55	Fr Francium 37	58-71 L 90-103	ه و	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of