

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Tidge Com

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

## **CO-ORDINATED SCIENCES**

0654/21

Paper 2 (Core)

October/November 2012

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Exam | For Examiner's Use |  |  |
|----------|--------------------|--|--|
| 1        |                    |  |  |
| 2        |                    |  |  |
| 3        |                    |  |  |
| 4        |                    |  |  |
| 5        |                    |  |  |
| 6        |                    |  |  |
| 7        |                    |  |  |
| 8        |                    |  |  |
| 9        |                    |  |  |
| 10       |                    |  |  |
| 11       |                    |  |  |
| 12       |                    |  |  |
| Total    |                    |  |  |

This document consists of 28 printed.



1 (a) Complete Table 1.1 by choosing one of the words from the list to match statement.

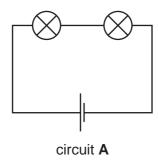

| ammeter | ampere | electron  | insulator |
|---------|--------|-----------|-----------|
| ohm     | volt   | voltmeter | watt      |

Table 1.1

| statement                                      | word |
|------------------------------------------------|------|
| a particle with a negative electrical charge   |      |
| an instrument that measures electrical current |      |
| the unit of potential difference               |      |
| a material that does not conduct electricity   |      |

[4]

(b) The diagram shows two circuits **A** and **B**. All the lamps and both cells are the same.



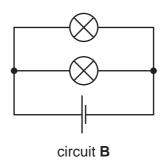



Fig. 1.1

(i) One lamp is unscrewed from circuit A.State what happens to the other lamp.

| Explain your answer. |      |
|----------------------|------|
|                      |      |
|                      |      |
|                      |      |
|                      | I.O. |
|                      | 14   |

| (ii) | Explain why lights in a house are connected as in circuit <b>B</b> and <b>not</b> as in circ | For iner's |
|------|----------------------------------------------------------------------------------------------|------------|
|      |                                                                                              | Tide       |
|      |                                                                                              | COM        |
|      | [2]                                                                                          |            |
| iii) | The resistance of each lamp is $1.2\Omega$ .                                                 |            |
|      | Calculate the combined resistance of the two lamps in circuit <b>A</b> .                     |            |
|      | State the formula that you use and show your working.                                        |            |
|      | formula used                                                                                 |            |
|      | working                                                                                      |            |
|      |                                                                                              |            |
|      |                                                                                              |            |
|      | Ω [2]                                                                                        |            |

2 (a) Fig. 2.1 shows part of the carbon cycle.

(b)

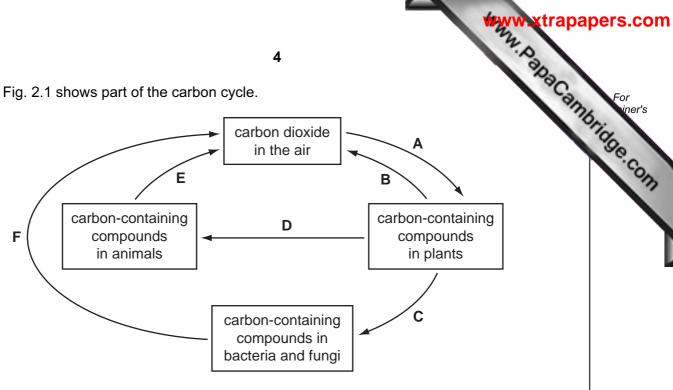
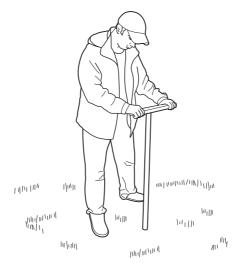




Fig. 2.1

| (i)  | State the letter or letters, A, B, C, D, E or F, that represent                                                                   |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|      | photosynthesis,                                                                                                                   |     |
|      | respiration.                                                                                                                      | [2] |
| (ii) | Name <b>one</b> carbon-containing compound in plants.                                                                             |     |
|      |                                                                                                                                   | [1] |
| iii) | State the approximate percentage of carbon dioxide in the air.                                                                    |     |
|      |                                                                                                                                   | [1] |
|      | rthworms play an important part in the carbon cycle. They eat dead leaves, est material containing plant nutrients into the soil. | and |
| Exp  | plain the meaning of the term <i>egest</i> .                                                                                      |     |
|      |                                                                                                                                   |     |

(c) In Florida, USA, some people collect earthworms by vibrating the soil. Earth respond to vibrations in the ground by crawling out of their burrows onto the surface.





A student investigated the effect of different frequencies of vibrations on the numbers of earthworms that emerged from the soil. Fig. 2.2 shows his results.



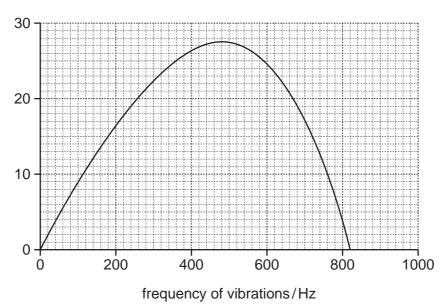



Fig. 2.2

(i) Describe the effect of different frequencies of vibrations on the numbers of earthworms emerging.

some parts (ii) Fishermen catch large numbers of earthworms to use as bait. There are concerns that too many worms are being collected in some parts Florida, USA. Suggest why it is important to conserve earthworms. [2] (iii) Moles are predators that live underground and eat earthworms. When moles burrow through the ground, they produce vibrations of around 500 Hz. Explain why the genes of earthworms that respond to vibrations of this frequency have a strong chance of being passed on to the next generation.

(a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids. 3

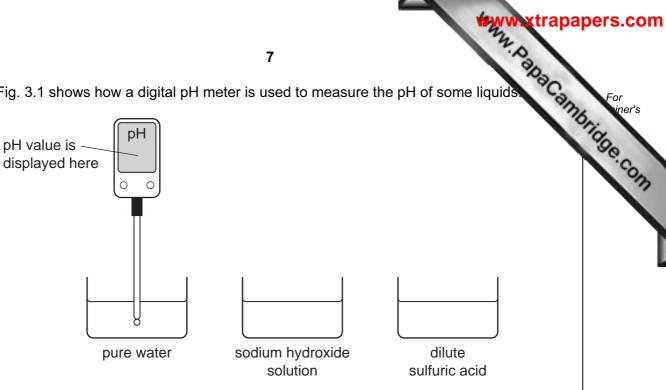



Fig. 3.1

(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

Table 3.1

| liquid                    | рН |
|---------------------------|----|
| pure water                |    |
| sodium hydroxide solution |    |
| dilute sulfuric acid      |    |

[2]

| (ii) | Suggest <b>one</b> advantage of using a digital pH meter rather than a piece of litr paper to compare the acidity of two different acid solutions. | nus |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      |                                                                                                                                                    |     |
|      |                                                                                                                                                    | [1  |

For iner's

(iii) Dilute acids are aqueous solutions that contain dissolved ions.

Table 3.2 shows the names of the ions in two common acids.

Table 3.2

| name of dilute acid | names of dissolved ions        |
|---------------------|--------------------------------|
| nitric acid         | hydrogen ions and nitrate ions |
| sulfuric acid       | hydrogen ions and sulfate ions |

8

A student is given an unlabelled beaker which is known to contain either dilute nitric acid or dilute sulfuric acid.

| Describe how the student could use a solution of acidified barium chloride to f out which acid the beaker contains. | ind |
|---------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                     |     |
|                                                                                                                     | [2] |

| (b) | When a reactive metal is added to a dilute acid, the metal reacts and dissolve |
|-----|--------------------------------------------------------------------------------|
|     | as is given off.                                                               |

| (i) | Name <b>one</b> reactive metal that must <b>not</b> be added to a dilute acid. |
|-----|--------------------------------------------------------------------------------|
|     | Explain why this metal should not be added to acid.                            |
|     | metal                                                                          |

(ii) Fig. 3.2 shows how a student tested the gas given off when magnesium was added to dilute hydrochloric acid.

explanation

[2]

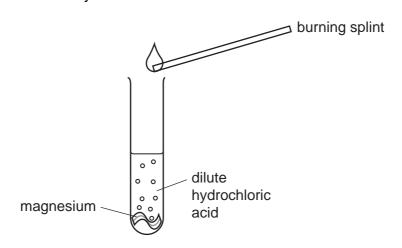



Fig. 3.2

State and explain what the student observed when he carried out this test.

| observation | <br> |
|-------------|------|
| explanation | [2]  |

(iii) Unreactive metals do not react in dilute acid.

A student is given a mixture of powdered magnesium and powdered copper.

Describe and explain how the student could use dilute hydrochloric acid and usual laboratory apparatus to obtain a sample of copper from this mixture.

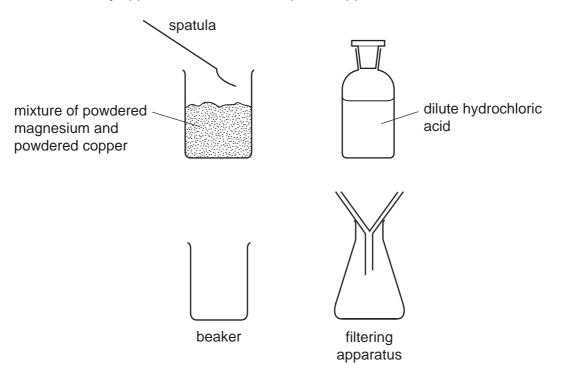
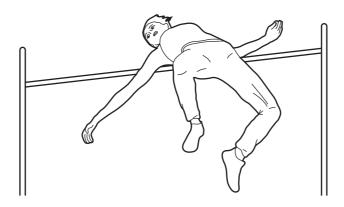




Fig. 3.3

| •• |
|----|
|    |
|    |
|    |
| 3] |
|    |

4 An athlete competes in the high jump.



| (a) |      | cribe the energy changes that take place between the athlete taking off and landing r the high jump. |
|-----|------|------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                      |
|     |      |                                                                                                      |
|     |      |                                                                                                      |
|     |      | [3]                                                                                                  |
| (b) | As t | he athlete moves upwards she decelerates.                                                            |
|     | Nan  | ne the force causing this deceleration and state its source.                                         |
|     | forc | e                                                                                                    |
|     | soui | rce[2]                                                                                               |
| (c) | Afte | r jumping, the athlete is sweating.                                                                  |
|     | (i)  | Describe, in terms of particles, how evaporation occurs from the surface of a liquid.                |
|     |      |                                                                                                      |
|     |      |                                                                                                      |
|     |      | [2]                                                                                                  |
|     | (ii) | Explain how this process will cool down the athlete.                                                 |
|     |      |                                                                                                      |
|     |      |                                                                                                      |
|     |      | [1]                                                                                                  |

|     |                           |                                                  |                                                                                                          | 12                                         | <b>X</b>                                                                   |
|-----|---------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|
| See | eds r                     | eed oxyg                                         | en for respiration whe                                                                                   | en they are germinatir                     | ng.                                                                        |
| (a) | (i)                       | Write the                                        | word equation for a                                                                                      | erobic respiration.                        |                                                                            |
|     |                           |                                                  |                                                                                                          |                                            | [2                                                                         |
|     | (ii)                      |                                                  | environmental conditor germination.                                                                      | tions, other than a s                      | upply of oxygen, that all seed                                             |
|     |                           | 1                                                |                                                                                                          |                                            |                                                                            |
|     |                           | 2                                                |                                                                                                          |                                            | [2                                                                         |
| (b) | res <sub>l</sub><br>Fou   | oiration of                                      | germinating seeds.                                                                                       |                                            | of temperature on the rate of temperature on the rate of the second either |
| (b) | resp<br>Fou<br>ger        | oiration of<br>or experiments                    | germinating seeds. ments, <b>A</b> , <b>B</b> , <b>C</b> and or dead seeds. re shown in Table 5.1        | d <b>D</b> , were set up.                  | ·                                                                          |
| (b) | resp<br>Fou<br>ger<br>The | oiration of<br>or experiments                    | germinating seeds. ments, <b>A</b> , <b>B</b> , <b>C</b> and or dead seeds. re shown in Table 5.1        | d <b>D</b> , were set up.                  | ·                                                                          |
| (b) | resp<br>Fou<br>ger<br>The | piration of<br>ar experiminating of<br>results a | germinating seeds. ments, <b>A</b> , <b>B</b> , <b>C</b> and or dead seeds. re shown in Table 5.1        | d <b>D</b> , were set up Table 5.1         | Each experiment used eithe                                                 |
| (b) | resp<br>Fou<br>ger<br>The | eriment                                          | re shown in Table 5.1                                                                                    | D, were set up.  Table 5.1  temperature/°C | Each experiment used either                                                |
| (b) | resp<br>Fou<br>ger<br>The | eriment                                          | seeds germinating seeds. ments, A, B, C and or dead seeds. re shown in Table 5.1 seeds germinating seeds | Table 5.1  temperature/°C                  | relative rate of respiration                                               |

| Explain why it was important to moduce set <b>B</b> in the experiment.                                           |     |
|------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                  |     |
| [1                                                                                                               | [1] |
| With reference to Table 5.1, describe the effect of temperature on the rate of respiration of germinating seeds. | of  |
|                                                                                                                  |     |
| [2                                                                                                               | [2] |

(iii) Respiration is controlled by enzymes.

| Predict and explain | the rate of respiration | n of germinating s | seeds at a | temperature |
|---------------------|-------------------------|--------------------|------------|-------------|
| 60°C.               | ·                       |                    |            | •           |

| www.xtrapap                                                                              | ers.com       |
|------------------------------------------------------------------------------------------|---------------|
| 13                                                                                       |               |
| Respiration is controlled by enzymes.                                                    | For<br>iner's |
| Predict and explain the rate of respiration of germinating seeds at a temperature 60 °C. | For<br>iner's |
| predicted results                                                                        | OM            |
| explanation                                                                              |               |
| [2]                                                                                      |               |

6 Some types of firework are made by filling a cardboard tube with firework mixture. Promixture is made from several solid substances which have been powdered and mategether.

Fig. 6.1 shows a typical firework.

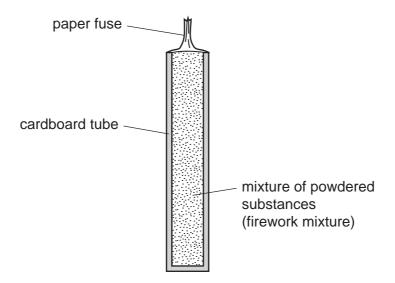



Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.

| (a) | (i)  | i) State <b>two</b> forms of energy that are released when the firework mixture reacts.     |  |  |
|-----|------|---------------------------------------------------------------------------------------------|--|--|
|     |      | and[1                                                                                       |  |  |
|     | (ii) | State the effect on the rate of reaction of using firework mixture in the form of a powder. |  |  |
|     |      | [1]                                                                                         |  |  |

(b) Some firework mixtures contain aluminium which is oxidised when the firework is lit.

Table 6.1 shows the numbers of protons and electrons in four particles, **A**, **B**, **C** and **D**, which are involved in the oxidation of aluminium.

Table 6.1

| particle | number of protons | number of electrons |
|----------|-------------------|---------------------|
| Α        | 8                 | 10                  |
| В        | 13                | 13                  |
| С        | 8                 | 8                   |
| D        | 13                | 10                  |

|     |      | www.xtrapaper                                                                                                | s.com          |
|-----|------|--------------------------------------------------------------------------------------------------------------|----------------|
|     |      | 15 A. O. D.                                                              |                |
|     | (i)  | State and explain which particle, A, B, C or D, in Table 6.1 is an alluminium.  particle                     | =or<br>hiner's |
|     |      | particle                                                                                                     | 0              |
|     |      | explanation                                                                                                  | OM             |
|     |      | [3]                                                                                                          |                |
|     | (ii) | State and explain which <b>two</b> particles in Table 6.1 could be found bonded together in aluminium oxide. |                |
|     |      | particles and                                                                                                |                |
|     |      | explanation                                                                                                  |                |
|     |      |                                                                                                              |                |
|     |      | [3]                                                                                                          |                |
| (c) | Fire | ework mixtures contain the compound potassium perchlorate, KClO <sub>4</sub> .                               |                |
|     |      | nen potassium perchlorate is heated, a colourless gas is given off which re-lights a wing splint.            |                |
|     | (i)  | State the name of this gas. [1]                                                                              |                |
|     | (ii) | Suggest how potassium perchlorate in the firework mixture helps the mixture to burn.                         |                |
|     |      |                                                                                                              |                |
|     |      |                                                                                                              |                |
|     |      | [2]                                                                                                          |                |

visible light

ultraviolet radiation

infra-red radiation

radio radiation

7 (a) Choose phrases from the list to complete the sentences.

gamma radiation

microwave radiation

|     | The   | human eye can detect                                                                                       |
|-----|-------|------------------------------------------------------------------------------------------------------------|
|     |       | can be felt as heat.                                                                                       |
|     | The   | water in food strongly absorbs                                                                             |
| (b) |       | a nuclear power station, nuclear fuel such as uranium releases energy by the<br>cess of nuclear fission.   |
|     | (i)   | State what happens to the uranium atoms.                                                                   |
|     |       | [1]                                                                                                        |
|     | (ii)  | At a nuclear power station, technicians work close to radioactive sources.                                 |
|     |       | State <b>one</b> way in which these workers could be harmed by radiation emitted from radioactive sources. |
|     |       | [1]                                                                                                        |
|     | (iii) | State <b>two</b> ways in which these workers could be protected from the radiation.                        |
|     |       | 1                                                                                                          |
|     |       |                                                                                                            |

2 \_\_\_\_\_

Please turn over for Question 8.

8 Fig. 8.1 shows the male reproductive system.

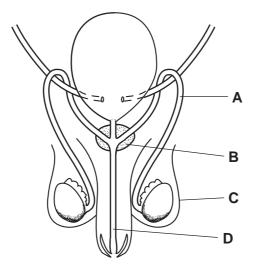
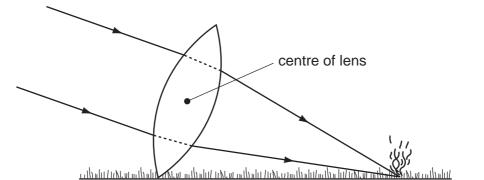



Fig. 8.1

| (a) | (i)   | Name parts <b>C</b> and <b>D</b> .                                                           |            |
|-----|-------|----------------------------------------------------------------------------------------------|------------|
|     |       | c                                                                                            |            |
|     |       | D                                                                                            | [2]        |
|     | (ii)  | State the functions of parts <b>A</b> and <b>B</b> .                                         |            |
|     |       | A                                                                                            |            |
|     |       | В                                                                                            | [2]        |
|     | (iii) | On Fig. 8.1, use a label line and the letter <b>S</b> to indicate where male gametes a made. | are<br>[1] |
| (b) | The   | sex of a baby is determined by the X and Y chromosomes.                                      |            |
|     | (i)   | Name the part of a cell in which the X and Y chromosomes are found.                          |            |
|     |       |                                                                                              | [1]        |
|     | (ii)  | Describe how the sex of a human baby is inherited.                                           |            |
|     |       |                                                                                              |            |
|     |       |                                                                                              |            |
|     |       |                                                                                              |            |
|     |       |                                                                                              | [2]        |

| (c) | The human immunodeficiency virus (HIV) can be transmitted during sexual interest | Can |
|-----|----------------------------------------------------------------------------------|-----|
|     | Outline <b>two</b> other ways in which HIV can be transmitted.                   | 13  |
|     | 1                                                                                |     |
|     |                                                                                  |     |
|     | 2                                                                                |     |
|     | [                                                                                | [2] |

| Chl | lorine | e is released when hydrochloric acid reacts with the compound manganese d                                   |
|-----|--------|-------------------------------------------------------------------------------------------------------------|
| (a) | (i)    | Explain why chlorine is an example of an <i>element</i> and <b>not</b> a <i>compound</i> .                  |
|     |        |                                                                                                             |
|     |        |                                                                                                             |
|     |        |                                                                                                             |
|     |        | [2]                                                                                                         |
|     | (ii)   | Describe a safe test for chlorine gas.                                                                      |
|     |        |                                                                                                             |
|     |        | [2]                                                                                                         |
| (b) |        | orine is found in Group 7 of the Periodic Table. Two of the other elements in oup 7 are bromine and iodine. |
|     | (i)    | Chlorine is a gas at room temperature.                                                                      |
|     |        | What are the physical states of bromine and iodine at room temperature?                                     |
|     |        | bromine                                                                                                     |
|     |        | iodine [2]                                                                                                  |
|     | (ii)   | Explain briefly why a solution of sodium bromide turns orange when chlorine is bubbled through it.          |
|     |        |                                                                                                             |
|     |        | [2]                                                                                                         |


21

10 (a) On the grid below, draw a wave with an amplitude of 2 cm and a wavelength of 4

For iner's

On your diagram, clearly label the amplitude and the wavelength. [3] (b) (i) Two sound waves, A and B, have the same frequency but A has a greater amplitude than B. What difference would you hear? [1] (ii) Two sound waves, X and Y, have the same amplitude but X has a greater frequency than Y. What difference would you hear? [1] (c) Energy travels to the Earth from the Sun. State whether this transfer of energy is by conduction, convection or radiation. Explain your answer.

(d) Fig. 10.1 shows parallel rays of light passing through a piece of glass acting as and being focused on the ground.



|     |       | Fig. 10.1                                                                                                                                                                      |     |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i)   | On Fig. 10.1, use the letter <b>P</b> to label the principal focus of the piece of glass.                                                                                      | [1] |
|     | (ii)  | Measure the focal length of the piece of glass in Fig. 10.1.                                                                                                                   |     |
|     |       | mmm                                                                                                                                                                            | [1] |
|     | (iii) | The glass acting as a lens produces a real image of the Sun.                                                                                                                   |     |
|     |       | Explain what is meant by the term real image.                                                                                                                                  |     |
|     |       |                                                                                                                                                                                |     |
|     |       |                                                                                                                                                                                | [1] |
| (e) | Cal   | e mass of the piece of glass is 10 g and the volume is 4 cm <sup>3</sup> .  culate the density of the glass.  te the formula that you use and show your working.  formula used |     |
|     |       | workingg/cm <sup>3</sup>                                                                                                                                                       | [2] |

cal fibre.

**(f)** Light is able to travel down optical fibres by total internal reflection.

Complete the diagram to show how the ray of light passes down the optical fibre.



[2]

Table 11.1 shows some of the nutrients contained in 100 g of five foods.

**Table 11.1** 

| shows some | e of the nutrients | 24<br>s contained in 1<br><b>Table 11.1</b> | 00 g of five food | ds.   |
|------------|--------------------|---------------------------------------------|-------------------|-------|
|            |                    | nutr                                        | ients             |       |
| food       | sugar/g            | starch/g                                    | protein/g         | fat/g |
| Α          | 0                  | 0                                           | 13                | 10    |
| В          | 14                 | 6                                           | 7                 | 0     |
| С          | 0                  | 0                                           | 14                | 6     |
| D          | 6                  | 8                                           | 12                | 14    |
| E          | 9                  | 14                                          | 3                 | 0     |

| (a) (i) Which two nutrients listed in Table 11.1 are carbohydrates? |       |                                                                                                                                                               |    |  |  |
|---------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|                                                                     |       | and[                                                                                                                                                          | 1] |  |  |
|                                                                     | (ii)  | Which nutrient listed in Table 11.1 contains nitrogen atoms in its molecules?                                                                                 |    |  |  |
|                                                                     |       | [′                                                                                                                                                            | 1] |  |  |
| (                                                                   | (iii) | State the letters of <b>two</b> foods in Table 11.1 that could have come from animals.                                                                        |    |  |  |
|                                                                     |       | and[                                                                                                                                                          | 1] |  |  |
| (                                                                   | (iv)  | State the letter of <b>one</b> food that would appear orange-brown when tested wit iodine solution, and give a purple colour when tested with biuret reagent. | th |  |  |
|                                                                     |       | [′                                                                                                                                                            | 1] |  |  |
| (b)                                                                 | Tab   | ole 11.1 does <b>not</b> contain information about vitamins or minerals.                                                                                      |    |  |  |
|                                                                     | Out   | tline the symptoms that a person may develop if their diet is deficient in                                                                                    |    |  |  |
|                                                                     | (i)   | vitamin D,                                                                                                                                                    |    |  |  |
|                                                                     |       | [1                                                                                                                                                            | [] |  |  |
|                                                                     | (ii)  | iron.                                                                                                                                                         |    |  |  |
|                                                                     |       | [1                                                                                                                                                            | 1] |  |  |

| (c) | Explain why eating a lot of foods containing sugar can increase the risk of tooth | For<br>iner's |
|-----|-----------------------------------------------------------------------------------|---------------|
|     |                                                                                   | age.C         |
|     |                                                                                   | OH            |
|     |                                                                                   | `             |
|     | [3]                                                                               |               |

12 (a) Draw four straight lines to connect each term in the left hand column with its min the right hand column.

term meaning

raw material for fuels and other chemicals

catalytic cracking compound containing only the elements hydrogen and carbon

fractional distillation reaction that produces alkenes

process that simplifies a complex mixture

- (b) Ethanol, C<sub>2</sub>H<sub>6</sub>O, is a colourless liquid which can be made from ethene, C<sub>2</sub>H<sub>4</sub>.
  - (i) An incomplete diagram of the structure of one molecule of ethanol is shown below.Complete the diagram.



hydrocarbon

[1]

[3]

(ii) Write a **word** chemical equation for the reaction in which ethanol is made from ethene.



[1]

(c) Fig. 12.1 shows apparatus that a student uses to investigate what happens ethanol vapour is heated in the presence of a catalyst.

Ethanol molecules react on the surface of the catalyst. The products of the reaction pass into the bromine solution.

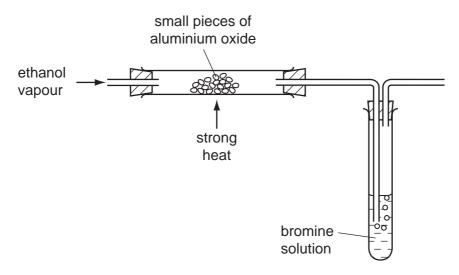



Fig. 12.1

The student observes that the bromine solution rapidly changes colour from orange to colourless.

|     | (i)  | State the type of hydrocarbon produced from ethanol in this reaction.                                                                  |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------|
|     |      | [1]                                                                                                                                    |
|     | (ii) | Explain why the products of the reaction do <b>not</b> include any aluminium compounds.                                                |
|     |      |                                                                                                                                        |
|     |      |                                                                                                                                        |
|     |      | [2]                                                                                                                                    |
| (d) |      | en ethene is heated and pressurised in the presence of a catalyst, it is converted a white compound which becomes solid when it cools. |
|     | Nar  | me the white solid compound and the type of chemical reaction which has occurred.                                                      |
|     | nan  | ne of white solid                                                                                                                      |
|     | type | e of chemical reaction [2]                                                                                                             |

The Periodic Table of the Elements DATA SHEET

|       |     |                    |                                          |                                               |                                           |                                              | _                           | 1                                                   | <b>₩</b> WW                                                                                                 | Axtrapapers.com                                                                        |
|-------|-----|--------------------|------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|       |     |                    |                                          |                                               | 28                                        |                                              |                             |                                                     | 13                                                                                                          | Palla                                                                                  |
|       | 0   | 4 <b>He</b> Helium | Ne N | 18 84 <b>Kr</b>                               | 36<br>131<br>Xe<br>Xenon                  | Radon 86                                     |                             | Lu<br>Lutetium                                      | Lr<br>Lawrencium<br>103                                                                                     | Astrapapers.com Papa Cambridge.com                                                     |
|       | IIA |                    | 19 Fluorine 9 35.5 <b>C1</b>             | Chlorine 17 80 <b>Br</b> Bromine              | 127   127                                 | Astatine 85                                  |                             | Yb<br>Ytterbium<br>70                               | Nobelium<br>102                                                                                             | age con                                                                                |
|       | I   |                    | Owygen 8                                 | Sulfur 79 Se Selenium                         | 34<br>128<br><b>Te</b><br>Tellurium       | Po                                           |                             | 169<br><b>Tm</b><br>Thulium<br>69                   | Md<br>Mendelevium<br>101                                                                                    |                                                                                        |
|       | ^   |                    | 14 Nitrogen 7                            | Phosphorus 15 75 AS Arsenic                   | 33<br>122<br><b>Sb</b><br>Antimony<br>51  | 209 <b>Bi</b> Bismuth                        |                             | 167 <b>Er</b> Erbium 68                             | Fm<br>Fermium<br>100                                                                                        | 1                                                                                      |
|       | \   |                    | 12 Carbon 6 Carbon 8 Si                  | Silicon 14 73 <b>Ge</b> Germanium             | 32<br>119<br><b>Sn</b><br>Tin             | 207<br><b>Pb</b><br>Lead                     |                             | 165<br><b>Ho</b><br>Holmium<br>67                   | <b>ES</b><br>Einsteinium<br>99                                                                              | (r.t.p.).                                                                              |
|       | =   |                    | 11<br>Boron<br>5<br>27<br><b>A1</b>      | Aluminium 13 70 <b>Ga</b> Gallium             | 115<br>  <b>n</b><br>  Indium             | 204 <b>T1</b> Thallium 81                    |                             | 162<br><b>Dy</b><br>Dysprosium<br>66                | Californium                                                                                                 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). |
|       |     |                    |                                          | 65<br><b>Zn</b><br>Zinc                       | 30<br>112<br><b>Cd</b><br>Cadmium<br>48   | 201<br><b>Hg</b><br>Mercury                  |                             | 159 <b>Tb</b> Terbium 65                            | <b>BK</b><br>Berkelium<br>97                                                                                | ature and                                                                              |
|       |     |                    |                                          | 64<br>C <b>Q</b>                              | 29<br>108<br><b>Ag</b><br>Silver<br>47    | 197<br><b>Au</b><br>Gold                     |                             | 157<br><b>Gd</b><br>Gadolinium<br>64                | Cm<br>Curium                                                                                                | n tempera                                                                              |
| Group |     |                    |                                          | 59<br>Nickel                                  | 28<br>106<br><b>Pd</b><br>Palladium       |                                              |                             | 152<br><b>Eu</b><br>Europium<br>63                  | Am<br>Americium<br>95                                                                                       | n³ at roor                                                                             |
| Gr    |     |                    |                                          | So<br>Cobait                                  | 27<br>103<br><b>Rh</b><br>Rhodium<br>45   | 192<br>  <b>r</b><br>  <b>r</b><br>  Iridium |                             | Sm<br>Samarium<br>62                                | <b>Pu</b> Plutonium                                                                                         | us is 24 dr                                                                            |
|       |     | T<br>Hydrogen      |                                          | 56<br>Pon Ion                                 | 26<br>101<br><b>Ru</b><br>Ruthenium<br>44 | 190<br><b>OS</b><br>Osmium<br>76             |                             | Pm<br>Promethium<br>61                              | Neptunium                                                                                                   | of any ga                                                                              |
|       |     |                    |                                          | 55<br>Mn                                      | Tc Technetium                             | 186<br><b>Re</b><br>Rhenium<br>75            |                             | 144<br>Neodymium<br>60                              |                                                                                                             | one mole                                                                               |
|       |     |                    |                                          | 52<br>Chromium                                | 96<br><b>Mo</b><br>Molybdenum             | 184 <b>W</b> Tungsten 74                     |                             | 141<br><b>Pr</b><br>Praseodymium<br>59              | <b>Pa</b> Protactinium 91                                                                                   | olume of                                                                               |
|       |     |                    |                                          | 51<br>Vanadium                                | 93 <b>Niobium</b>                         | Ta Tamtalum 7.3                              |                             | 140 <b>Ce</b> Cerium                                | 232<br><b>Th</b><br>Thorium                                                                                 | The v                                                                                  |
|       |     |                    |                                          | 48<br>Tranium                                 | 91 <b>Zr</b> Ziroonium                    |                                              |                             | 1                                                   | nic mass<br>Ibol<br>nic) number                                                                             |                                                                                        |
|       |     |                    |                                          | Scandium                                      | 21<br>89 <b>×</b>                         | 139 <b>La</b> Lanthanum                      | Actinium t                  | d series<br>series                                  | <ul> <li>a = relative atomic mass</li> <li>X = atomic symbol</li> <li>b = proton (atomic) number</li> </ul> |                                                                                        |
|       | =   |                    | Berylium  4  Berylium  24                | Magnesium<br>12<br>40<br><b>Ca</b><br>Calcium | 20<br>88<br><b>Sr</b><br>Strontium        | 137 <b>Ba</b> Barium 56                      | 226 <b>Ra</b> Radium 88     | *58-71 Lanthanoid series<br>190-103 Actinoid series | © × ö × σ                                                                                                   |                                                                                        |
|       | _   |                    | Lithium 3 23 23                          | Sodium 11 39                                  | 85 <b>Rb</b> Rubidium                     | 133 <b>Cs</b> Caesium 55                     | <b>Fr</b><br>Francium<br>87 | *58-71 L                                            | Key b                                                                                                       |                                                                                        |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.