CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0654 CO-ORDINATED SCIENCES

0654/33

Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age	2	Mark Scheme	Syllabus	Paper
	Ū		Cambridge IGCSE – October/November 2015	0654	33
1	(a)	(i)	fat ; vitamin D ;		[2]
		(ii)	$\frac{825}{275}; \\ \times 100 = 300;$		[2]
	(b)	ma ma so	ay not be absorbed as efficiently ; ay be more than the baby needs ; me nutrients destroyed during preparation/storage ;		[max 1]
	(c)	co ch no alv he at	ntains antibodies ; eaper ; need for sterilisation/etc. ; vays available ; lps in forming mother-baby bond ; the right temperature ;		
		rec	duced chance of the mother developing breast/ovarian cancer;		[max 2]
					[Total: 7]
2	(a)	(i)	neutralisation ;		[1]
		(ii)	idea of greater precision/accuracy;		[1]
	(b)	(i)	evidence of moles = concentration × volume ; use of volume in dm ³ ; (e.g. $0.1 \times 20.0/1000 = 0.002$ (moles)) OR (conversion of cm ³ to dm ³) 20.0 ÷ 1000 ; (moles = concentration × volume) 0.1 × 0.02 or 0.002 moles ;		[max 2]
		(ii)	40 cm ³ ; this is volume required for neutrality/pH 7 ;		[2]
		(iii)	any idea that amounts of acid and alkali are the same at the neutral so if twice the volume of acid then acid concentration is half of alkali = $0.1 \div 2 = 0.05$ (mol/dm ³); OR	point ; i	
			no. of moles HC <i>l</i> = no. of moles NaOH/0.002 ; concentration of HC <i>l</i> = $\frac{\text{moles}}{\text{volume}} = \frac{0.002}{40 \times 10^{-3}} = 0.05$;		[max 2]
					[Total: 8]

Ρ	age	3		ambridge	Mark Sc	heme	mbor 2044		Syllabu	IS	Paper
				zampriage	1903E - UCI	ODET/NOV	emper 2013)	0054		33
3	(a)	((gamma)	X-ray	ultraviolet	(visible)	infra-red	(micro-wa	ives)	radi	0
	(b)	bla	ick surface	es are better	(radiation) a	bsorbers tl	nan white su	urfaces ;			^] ^
	(c)	(i)	label line	where both	ravs meet :						[
	(-)	(ii)	real imaç	ge can be fo	ormed on scre	en/virtual	image canr	not ;			[1
	(d)	(i)	(pressure evidence = $\frac{20}{24}$ = (e =) <u>force</u> ; e of multiplic 0.83 (N/cm ²	ation by 2/us ²) ;	se of area	of 24 cm ^{2 ;}				[3
		(ii)	24 8300 (Pa	a);							[′
	(e)	(i)	collide w <u>force</u> of c	ith walls of o collisions ex	container ; erts a pressu	ire ;					[2
		(ii)	$P_1V_1 = P$ $P_2 = 200$	$V_2 V_2 \text{ etc. };$ $1000 \times \frac{0.015}{0.065}$	= 4615 (kPa	a);					[2
										Т	otal: 12
1	(a)	2M 1	lg(s) + C(mark: corre	$O_2(g) \rightarrow 2N$ ect formulae	MgO(s) + C(e;1 mark: ba	s) lanced ; 1	mark: state	symbols ;			[3
	(b)	(i)	Mg ion n Mg ion n Mg ion is	noves/is att noves becau s dischargec	racted to the use of the attr I/gains <u>2</u> elec	negative e active forc ctrons ;	lectrode/ca e between (thode ; opposite cha	arges ;		[3
		(ii)	magnesi and not r	um is reacti magnesium	ve/too reacti ;	ve/aqueou	us solution p	produces hy	drogen		[1
		(iii)	chlorine C <i>l</i> 2;	;							[2
										I	Total: 9

Pa	age 4	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – October/November 2015	0654	33
5	(a)	meiosis ; different ; halved ; haploid ;		[4]
	(b)	repair/replacement ; growth ; asexual reproduction ;		[3]
				[Total: 7]
6	(a)	distance = area under graph or working ; = $(\frac{1}{2} \times 30 \times 20) + (30 \times 20) + (\frac{1}{2} \times 20 \times 20) = 1100 \text{ (m)}$;		[2]
	(b)	(work done =) force × distance ; 800 × 1 500 = 1 200 000 (J) ;		[2]
	(c)	(i) (power =) $V \times I$; = 12 × 4.5 = 54 (W);		[2]
		(ii) (resistance =) $\frac{V}{I}$;		
		$=\frac{12}{4.5}=2.7\;(\Omega)\;;$		[2]
	(iii) use of $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$;		
		$= \frac{1}{2.7} + \frac{1}{24}$ so $R_T = 2.43 (\Omega)$;		[2]
				[Total: 10]
7	(a)	xylem ;		[1]
	(b)	water evaporates by <u>transpiration</u> ; which causes a tension/pull from above; water moves down water potential gradient :		
		cohesion / cohesive (forces) between water <u>molecules</u> ;		[4]
	(c)	(i) (coloured) water does not move as far ;		[1]
		(ii) (coloured) water does not move as far ;		[1]
				[Total: 7]

Pa	age (5	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2015	0654	33
8	(a)	pet frac	roleum/crude oil ; ctional distillation ;		[2]
	(b)	(i)	nitrogen combines with oxygen ; both these gases are contained in air/high temperature facilitates o	combination	; [2]
		(ii)	reference to formation of acidic rain or its effects ; reference to harmful effects on respiratory systems ;		[max 1]
		(iii)	(waste gases pass over) catalytic converter/a catalyst ;		[1]
	(c)	(i)	hydrocarbon/general formula C_nH_{2n+2} ; containing only single bonds/which is saturated ;		[2]
	(d)	(ii)	H H H H H - H H - C - C - C - C - H - H H H H four carbon atoms in chain ; 2n+2 hydrogen atoms and no other element ; only C-H single bonds ; H - H		[3]
		Н	$-\overset{I}{\overset{C}{}}_{\overset{H}{}} + \overset{O=O}{\overset{O=O}{}} \longrightarrow O=C=O+\overset{H-O-H}{\overset{H-O-H}{\overset{H-O-H}{}}$		
		1 m	nark for correct diagrams for oxygen and water ; 1 mark: balanced ;	I	[2] [Total: 13]
9	(a)	(i)	aluminium/lead/concrete ;		[1]
		(ii)	3 half-lives ; 900 (years) ;		[2]
	(b)	wire <u>ind</u> dire cur slip	es cut magnetic field/changing magnetic field ; <u>uces</u> current/emf ; ection of relative movement changes every half turn ; rent changes direction every half turn ; o rings maintain continuous connection ;		[max 3]

Pa	ige 6	6	Mark Scheme	Syllabus	Paper
	-		Cambridge IGCSE – October/November 2015	0654	33
	(c)	eas eas	sier/quicker to magnetise iron ; sier/quicker for iron to lose its magnetism/steel forms permanent ma	ignet ;	[max 1]
	(d)	(ch = 2	arge =) current × time ; 4 × 60 = 1440 ;		101
		υ;			႞ၖ႞
					[Total: 10]
10	(a)	(i)	nowhere for the animal to live ; loss of food sources ;		[2]
		(ii)	logging ; building of roads/towns/factories ; farming :		
			fuel;		[max 2]
		(iii)	loss of soil/flooding/build-up of carbon dioxide/global warming ;		[1]
	(b)	cor (ca alte	ntrol of hunting/nature reserve/conservation area ; ptive) breeding programmes ; ernatives to timber/control of deforestation/replanting ;		
		AV	P;		[max 2]
	(c)	par	t of the food chain/AW ;		[1]
					[Total: 8]
11	(a)	(i)	increases (from Li) to C/positive in Groups I to IV ; decreases from N (to Ne)/negative in Groups V to VIII ; maximum occurs at carbon ;		[max 2]
		(ii)	silicon/Si;		[1]
	(b)	refe stru hav	erence. to allotropes/two allotropes correctly named/reference to dif uctures/correct detail of structures, e.g. reasonable diagrams/idea th ve different spacing ;	ferent nat atoms	[max 1]
	(c)	16 arra	electrons ; anged 2,8,6 ;		[2]

© Cambridge International Examinations 2015

33 [1] [max 3] [2] [2] [3] [1]
[1] [max 3])tal: 10] [2] [3] [1]
[max 3])tal: 10] [2] [3]
[2] [3]
[2] [3]
[2] [3] [1]
[3]
[3]
[3]
[1]
[1]
[1]
[4]
נין
otal: 8]
[3]
[1]
[1]
[2]
[0]
[3]
[3] [1]
otal: