

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

Paper 1 Multiple Choice (Core)

0654/11 October/November 2019 45 minutes

Additional Materials: Multiple Choice Answer Sheet Soft clean eraser Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

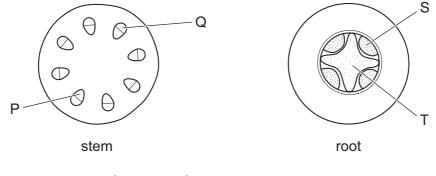
Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. DO **NOT** WRITE IN ANY BARCODES.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

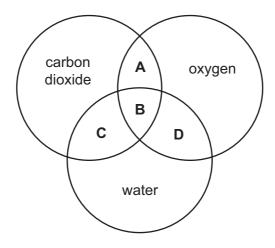
Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

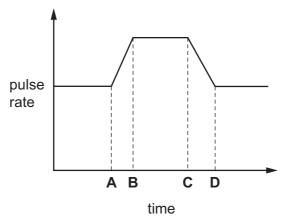

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used.

This document consists of 15 printed pages and 1 blank page.

- 1 Which process do all living organisms carry out?
 - A asexual reproduction
 - **B** excretion
 - **C** ingestion
 - D photosynthesis
- 2 Which statement about animal cells and plant cells is correct?
 - **A** Only animal cells possess cell membranes.
 - **B** Only animal cells possess cell walls.
 - **C** Only plant cells possess cell membranes.
 - **D** Only plant cells possess cell walls.
- 3 Which result with the biuret test shows that protein is present?
 - A blue
 - **B** green
 - **C** orange
 - D purple
- 4 Which statements are correct for all enzymes?
 - 1 They are proteins.
 - 2 They are unaffected by temperature.
 - 3 They speed up chemical reactions.
 - 4 They work best at a high pH.
 - **A** 1, 2 and 4 **B** 1, 3 and 4 **C** 1 and 3 only **D** 2 and 4 only
- 5 What is the word equation for photosynthesis?
 - A carbon dioxide + glucose \rightarrow oxygen + water
 - **B** carbon dioxide + water \rightarrow oxygen + glucose
 - **C** oxygen + glucose \rightarrow carbon dioxide + water
 - **D** oxygen + water \rightarrow carbon dioxide + glucose


www.xtrapapers.com

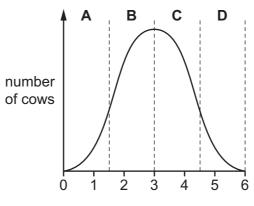
- **6** Which process can be defined as the movement of small, water-soluble food molecules through the wall of the intestine into the blood?
 - A absorption
 - **B** assimilation
 - **C** digestion
 - **D** egestion
- 7 The diagrams show sections through a stem and a root.


Which indicate the positions of the xylem?

- **A** P and S **B** P and T **C** Q and S **D** Q and T
- 8 Which area represents the substances produced in aerobic respiration?

9 The graph shows the pulse rate over a period of time.

At which point was adrenaline released into the blood?



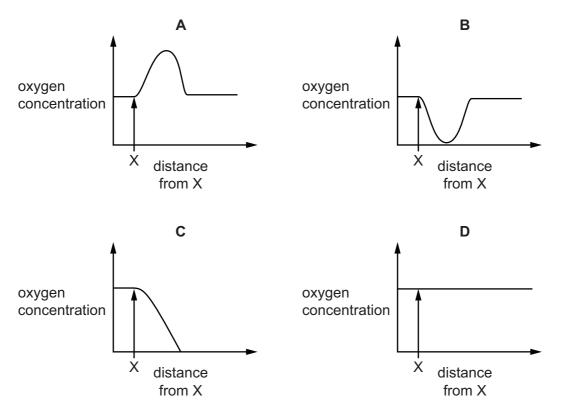
10 Which row is correct about human gametes?

	site of female gamete production	site of male gamete production
Α	ovaries	sperm ducts
в	ovaries	testes
С	oviduct	sperm ducts
D	oviduct	testes

11 The graph shows the number of cows producing different volumes of milk.

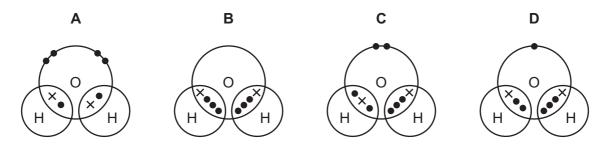
Which group of cows should be used in a programme to breed more cows with the highest milk yield?

volume of milk (arbitrary units)

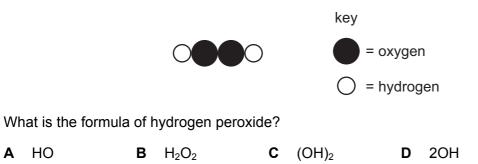

12 The diagram shows a food chain.

grass \rightarrow grasshopper \rightarrow frog \rightarrow snake \rightarrow buzzard

Which is correct?


- **A** The buzzard is a producer.
- **B** The frog is a primary consumer.
- **C** The grasshopper is a secondary consumer.
- **D** The snake is a tertiary consumer.
- **13** Untreated sewage is released into a river at point X.

Which graph correctly shows changes in oxygen concentration of the water as the river flows away from X?


- 14 Which statement describes the arrangement of particles in a solid?
 - **A** The particles are close together and move randomly.
 - **B** The particles are close together and vibrate about a fixed point.
 - **C** The particles are far apart and move randomly.
 - **D** The particles are far apart and vibrate about a fixed point.

- 15 Which processes are chemical changes?
 - 1 conversion of steam to liquid water
 - 2 cracking of alkanes
 - 3 fractional distillation of petroleum
 - 4 thermal decomposition of calcium carbonate
 - A 1 and 3 B 1 and 4 C 2 and 3 D 2 and 4
- 16 What is the dot-and-cross diagram for a water molecule?

17 Hydrogen peroxide is a compound.

A molecule of hydrogen peroxide can be represented as shown.

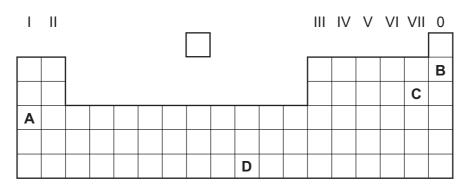
18 Concentrated aqueous sodium chloride is electrolysed using inert electrodes.

Which row identifies the product at each electrode?

	product at anode	product at cathode
Α	chlorine	sodium
в	hydrogen	chlorine
С	sodium	chlorine
D	chlorine	hydrogen

19 The table shows the temperature of some water before and after a solid is dissolved in it.

Which change is the most exothermic?


	temperature before /°C	temperature after /°C
Α	20	18
В	20	40
С	25	18
D	25	42

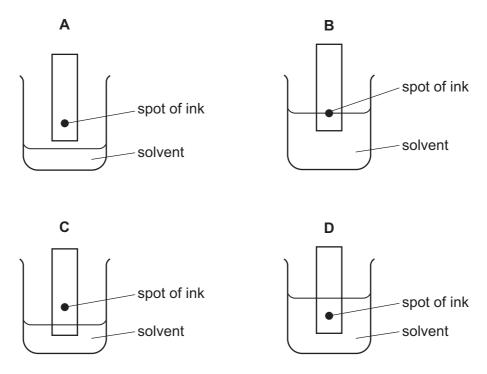
20 Hydrogen peroxide decomposes very slowly.

When element X is added, hydrogen peroxide decomposes much faster.

Element X is unchanged at the end of this reaction.

What is element X?

21 The pH values of four liquids are 1, 4, 7 and 13.


The four liquids are distilled water, nitric acid, potassium hydroxide and vinegar.

Which row shows the pH values of the liquids?

	distilled water	nitric acid	potassium hydroxide	vinegar
Α	4	7	13	1
в	4	13	7	1
С	7	1	4	13
D	7	1	13	4

22 The colours in an ink can be separated by chromatography.

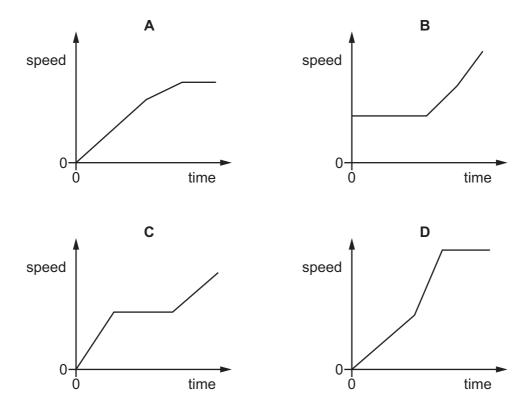
Which diagram shows the correct way to set up the apparatus?

- 23 Which statement about the Periodic Table is correct?
 - A Elements are listed in order of neutron number.
 - B Elements are listed in order of nucleon number.
 - **C** Elements are listed in order of proton number.
 - D Elements are listed in order of relative atomic mass.
- 24 Four properties of metals are listed.
 - 1 high melting point
 - 2 low density
 - 3 resistance to corrosion
 - 4 conducts electricity

Which properties make aluminium suitable for use in cans containing drinks?

A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

- 25 Which three elements are needed in fertilisers to help plants grow?
 - **A** nitrogen, phosphorus, potassium
 - **B** nitrogen, phosphorus, sodium
 - **C** nitrogen, sodium, potassium
 - D sodium, phosphorus, potassium
- 26 Which statement about the manufacture of lime from limestone is not correct?
 - **A** A high pressure is used.
 - **B** A high temperature is used.
 - **C** Carbon dioxide is produced.
 - **D** Thermal decomposition occurs.
- **27** Petroleum is separated into useful fractions by fractional distillation.


Which row matches the fractions to their uses?

	fuel	heating and cooking	making chemicals
Α	bitumen	naphtha	refinery gas
в	gasoline	bitumen	naphtha
С	gasoline	refinery gas	naphtha
D	naphtha	refinery gas	gasoline

www.xtrapapers.com

28 The speed-time graphs represent the motion of a car moving in a straight line.

Which graph represents the car moving first with a constant acceleration, then with a larger constant acceleration and then with a constant speed?

29 An object has a mass of 20 kg and a density of 8400 kg/m^3 .

What is the volume of the object?

- **A** $2.4 \times 10^{-3} \, m^3$
- $\textbf{B} \quad 4.2\times 10^2 \, m^3$
- $\bm{C} ~~1.6\times 10^5\,m^3$
- $\boldsymbol{D} \quad 1.7\times 10^5\,m^3$
- 30 An engine is doing work on a car as the car moves along a road.

Which two changes must result in less work being done on the car by the engine?

- A decreasing the engine's force on the car and decreasing the distance moved by the car
- **B** decreasing the engine's force on the car and increasing the distance moved by the car
- **C** increasing the engine's force on the car and decreasing the distance moved by the car
- **D** increasing the engine's force on the car and increasing the distance moved by the car

31 The table shows four sources of energy used to generate electricity.

Which source is shown with a statement of whether it is renewable and whether it is reliable at all times?

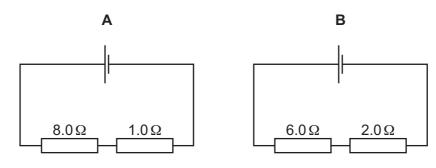
	source	renewable	reliable at all times
Α	coal	yes	no
в	nuclear fission	no	yes
С	tides	no	no
D	wind	yes	yes

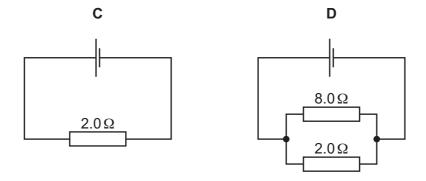
32 The more energetic molecules of a liquid are escaping from its surface, causing the liquid to cool.

What is happening to the liquid?

- **A** It is boiling.
- **B** It is condensing.
- C It is evaporating.
- **D** It is melting.
- **33** A substance is a gas when its temperature is 65 °C.

How do the boiling point and the melting point of this substance compare with 65 °C?

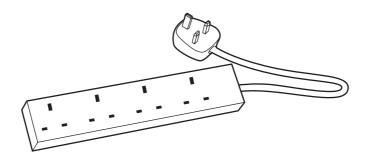

	boiling point	melting point
Α	above 65 °C	above 65 °C
в	above 65 °C	below 65 °C
С	below 65 °C	above 65 °C
D	below 65 °C	below 65 °C


- **34** Which material is a good thermal conductor?
 - **A** aluminium
 - B cardboard
 - **C** rubber
 - D wool

35 There is a battery of e.m.f. *V* in a circuit of total resistance *R*.

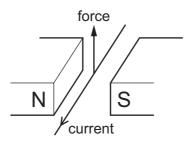
Which pair of changes must result in a larger current in the circuit?

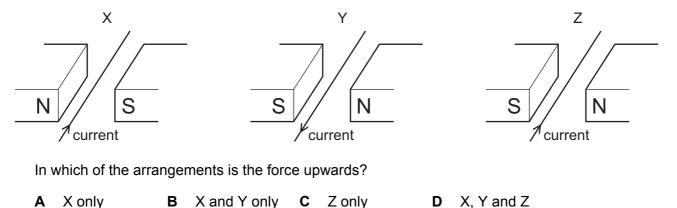
- A decreasing V and decreasing R
- **B** decreasing *V* and increasing *R*
- **C** increasing *V* and decreasing *R*
- **D** increasing *V* and increasing *R*
- 36 Which circuit has the smallest resistance?



37 Which row shows how lamps are connected in a lighting circuit in a house and gives an advantage of connecting them in this way?

	how lamps are connected	advantage of connecting them in this way
Α	in parallel	they can be switched separately
в	in parallel	they share the voltage
С	in series	they can be switched separately
D	in series	they share the voltage


38 An electrical extension block has four sockets, a cable which can safely take a current of 6A and a plug. It is protected by a fuse rated at 5A.


The extension block is used with four appliances and the 5A fuse blows. The owner replaces the 5A fuse with a 13A fuse.

Why is the extension block now dangerous?

- **A** The appliances may overheat before the fuse blows.
- **B** The cable may overheat before the fuse blows.
- **C** The sockets may burn out before the fuse blows.
- **D** The 13 A fuse may blow too soon.
- **39** A wire is placed between two magnetic poles. There is a current in the wire in the direction shown. The wire experiences an upward force.

There is also a force on the wire in arrangements X, Y and Z.

40 Which type of radiation has the greatest ionising effect, and which is the most penetrating?

	greatest ionising effect	most penetrating
Α	α -particles	α -particles
В	α -particles	γ-rays
С	γ-rays	α -particles
D	γ-rays	γ-rays

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

I II IV V V VI VII VII 1 1 1 1 1 V V V VI VII VII 1 1 1 1 V V V VI VII															_									
III III IV V VI 1 </td <td></td> <td>III></td> <td>5</td> <td>He</td> <td>helium 4</td> <td>10</td> <td>Ne</td> <td>neon 20</td> <td>18</td> <td>Ar</td> <td>argon 40</td> <td>36</td> <td>Ъ</td> <td>krypton 84</td> <td>54</td> <td>Xe</td> <td>xenon 131</td> <td>86</td> <td>Rn</td> <td>radon -</td> <td></td> <td></td> <td></td>		III>	5	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Ъ	krypton 84	54	Xe	xenon 131	86	Rn	radon -				
III III IV V 1 1 1 1 1 1 V V 1 1 1 1 1 1 1 V V 1 1 1 1 1 1 1 V V V 1 1 1 1 1 1 1 1 V V V 1 <td></td> <td>IIV</td> <td></td> <td></td> <td></td> <td>6</td> <td>ш</td> <td>fluorine 19</td> <td>17</td> <td>Cl</td> <td>chlorine 35.5</td> <td>35</td> <td>Ъ</td> <td>bromine 80</td> <td>53</td> <td>Ι</td> <td>iodine 127</td> <td>85</td> <td>At</td> <td>astatine _</td> <td></td> <td></td> <td></td>		IIV				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine _				
III III III III III IV 9 4 1 </td <td></td> <td>⋝</td> <td></td> <td></td> <td></td> <td>80</td> <td>0</td> <td>oxygen 16</td> <td>16</td> <td>ა</td> <td>sulfur 32</td> <td>34</td> <td>Se</td> <td>selenium 79</td> <td>52</td> <td>Те</td> <td>tellurium 128</td> <td>84</td> <td>Ро</td> <td>polonium –</td> <td>116</td> <td>Ľ</td> <td>livermorium –</td>		⋝				80	0	oxygen 16	16	ა	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ро	polonium –	116	Ľ	livermorium –	
IIIIIIIII III III III III III III III III $IIII$ $IIII$ $IIII$ $IIIII$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	B	bismuth 209				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		≥				9	U	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	РЬ	lead 207	114	Fl	flerovium -	
$\label{eq:second} \mbox{Include} \$		≡				5	ш	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
IIIIII 1 4 4 4 9 11 9 12 9 12 9 12 9 12 9 12 1					I							30	Zn	zinc 65	48	Cd	cadmium 112	80	Hg	mercury 201	112	Cu	copernicium -	
III III III III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII													29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
II I 4 4 Be 4 90/luum 9 12 1 8 atomic number adomic symbol megnesium atomic number atomic number 23 21 22 23 24 26 27 23 33 40 41 42 26 76 71 8 33 40 41 42 24 35 24 35 8 33 40 41 42 43 44 45 8 33 40 41 42 43 44 45 8 33 30 40 41 42 44 45 8 57-71 73 74 75 76 70 8 88-103 104 103 104 103 103 103 103 8 88-103 104 106 106 107 103 103	dn											28	Ī	nickel 59	46	Pd	palladium 106	78	ħ	platinum 195	110	Ds	darmstadtium -	
II II 4 4 Be atomic number beylium 4 alomic symbol atomic symbol beylium 2 catetim tante atomic symbol atomic symbol maneare atomic symbol maneare 2 doin 2 2 2 2 2 2 2 2 2 3 3 40 41 43 51 55 55 56 57-71 7 7 8 89-103 104 105 105 106 107 108 108 106 109 107 100 107 101 105 102 106 103 106 104 105 105	Gro											27	ပိ	cobalt 59	45	Rh	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -	
II II 4 4 Be berylium 9 4 atomic number 9 atomic number atomic number 9 12 Key Mg magnesium 24 20 21 22 23 24 atomic number atomic mass 12 Mg magnesium 24 20 21 23 26 21 22 23 20 21 22 23 24 38 39 40 41 42 88 33 40 41 42 137 74 74 74 137 74 74 74 137 104 105 106 74 105 106 59 74 105 106 88 89-103 104 105 74 105 106 75 73 74 76 105 59 77 105 50 88 89-103 104 74 105 50 74 105 50 74 105 50 74 105 50 74 105 50			- :	I.	hydrogen 1							26	Fе	iron 56	44	Ru	ruthenium 101	76	SO	osmium 190	108	Hs	hassium _	
II II 4 4 Be tatomic number beryllium 9 12 Key Mg name 12 Mg magnesium 24 24 SC 24 SC 23 SC 7 27 88 89–103 88 89–103 88 89–103 88 89–103 77 72 73 73 88 89–103 718 Rfh actinoids Rf 73 73 74 72 73 73 88 89–103 718 Rf 90 104 73 73 74 72 75 73 86 89–103 76 73 77 73 78 73 77 73 78 73 88 704 7104 705 75 73 76 73 77 73 78 79<												25	Mn	manganese 55	43	Ц	technetium -	75	Re	rhenium 186	107	Bh	bohrium _	
Image: Product of the standard structure Image: Product structure						atomic number	Ы	ss				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium -	
International A 4 berylium berylium 9 generalium 24 berylium 9 generalium 24 berylium 24 berylium 24 berylium 24 berylium 24 berylium 27 calcium samesium 24 berlium 12 berlium 12 berlium 12 berlium 12 berlium 12 berlium 12 berlium 13 b					Key		nic symb	name ve atomic mas				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium _	
Image Image <td< td=""><td></td><td rowspan="2"></td><td>ato</td><td>relai</td><td></td><td></td><td></td><td>22</td><td>Ħ</td><td>titanium 48</td><td>40</td><td>Zr</td><td>zirconium 91</td><td>72</td><td>Ŧ</td><td>hafnium 178</td><td>104</td><td>Ŗ</td><td>rutherfordium -</td></td<>							ato	relai				22	Ħ	titanium 48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	Ŗ	rutherfordium -	
									L			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		
- T T T Solution abidium Bidium Bidium Bidium		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Ŋ	strontium 88	56	Ba	barium 137	88	Ra	radium -	
		_				s	:	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ŗ	francium -	

Yb 173 173 173 173 173 172 No mendelevium thulium 101 Md erbium 167 100 Fm femium I holmium 165 99 einsteinium Dy dysprosium 163 98 Cf Califonium Tb 159 97 97 Bk berkelium Gd 157 96 96 curium curium Eu 152 95 95 amenicium Samarium 150 94 94 Pu Pu -Np neptunium -heodymium 144 92 92 92 238 238 Praseodymium 141 91 Pa protactinium 231 Cenium 140 90 90 90 232 232 La lanthanum 139 89 89 actinium actinoids

Pm promethium

lanthanoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

www.xtrapapers.com

Lu Iutetium 175 103 Lr lawrencium