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Section A: Probability (60 marks)

1 The lifetime, T years, of a mortgage may be modelled by the random variable T with probability
density function f�t�, where

f�t� = �
k sin

� 3
32t

�
0 ≤ t ≤ 8�,

0 otherwise.

(i) Show that k = 3
32

�
2 −

�
2
�
. [4]

(ii) Sketch the graph of f�t� and state the mode. [3]

2 (i) The statistic T is derived from a random sample taken from a population which has an unknown
parameter �. T is an unbiased estimator of �. What does the statement ‘T is an unbiased
estimator of �’ imply? [1]

(ii) A random sample of size n is taken from each of two independent populations. The first
population has a non-zero mean � and variance �2 and X1 denotes the sample mean. The second
population has mean 1

2� and variance b�2, where b is a positive constant, and X2 denotes the
sample mean. Two unbiased estimators for � are defined by

T1 = 3X1 − aX2 and T2 = 1
5�4X1 + 2X2�.

(a) Determine the value of a. [3]

(b) Show that Var�T1� = �2

n
�9 + 16b� and find a similar expression for Var�T2�. [3]

(c) The estimator with the smaller variance is preferred. State which of T1 and T2 is the
preferred estimator of �. [1]

3 The number of signal failures in a certain region of the railway network averages 10 every 3 weeks.
Assume that signal failures occur independently, randomly and at a constant mean rate.

(i) Find the probability that

(a) there are between 7 and 12 (inclusive) signal failures in a three-week period, [2]

(b) there are more than 4 signal failures in a one-week period. [3]

(ii) It has been calculated, using a suitable distributional approximation, that the probability of more
than 62 signal failures in a period of n weeks is 0.0385. Find the value of n. [6]
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4 It is given that X and Y are independent random variables with distributions N��x, �
2
x� and N��y, �

2
y�

respectively, and that W is a random variable such that W = X + Y.

(i) Use moment generating functions to show that the distribution of W is N��x + �y, �
2
x + �2

y�. [2]

(ii) State the distribution of X − Y. [1]

The diameters of the central poles of one brand of rotary clothes lines are normally distributed with
mean 3.75 cm and variance 0.000 125 cm2. The diameters of the cylindrical tubes, into which the
central poles fit, are normally distributed with mean 3.85 cm and variance 0.0001 cm2. Poles and
tubes are chosen at random. The ‘clearance’ between a tube and a pole is the diameter of the tube
minus the diameter of the pole.

(iii) Find the probability that a pole and tube have a clearance between 0.08 cm and 0.13 cm. [4]

(iv) Given that a pole and tube have a clearance between 0.08 cm and 0.13 cm, find the probability
that the clearance is between 0.11 cm and 0.125 cm. [4]

5 The random variable X has a binomial distribution with parameters n and p, where p > 0.5. A random
sample of 4n observations of X is taken and X denotes the sample mean. It is given that E�X� = 180
and Var�X� = 0.0225.

(i) Find

(a) the values of p and n, [6]

(b) P�X < 179.8�, [3]

(c) the value of a for which P�180 − a < X < 180 + a� = 0.99, giving your answer correct to
2 decimal places. [2]

(ii) State how you have used the Central Limit Theorem in part (i). [1]

6 (i) Verify that �1 − t6� = �1 − t��1 + t + t2 + t3 + t4 + t5�. [1]

(ii) An unbiased six-faced die is rolled r times. Show that the probability generating function for
the total score is �

t�1 − t6�
6�1 − t�

�r

. 	4

(iii) Hence show that the probability of the total score being �r + 3� is�1

6

�r+1
r�r + 1��r + 2�. 	6


© UCLES 2013 9795/02/O/N/13 [Turn over

www.xtrapapers.com



4

Section B: Mechanics (60 marks)

7 At a given instant two stunt cars, X and Y , are at distances 500 m and 800 m respectively from the
point of intersection, O, of two straight roads crossing at right angles. The stunt cars are approaching
O at uniform speeds of 15 m s−1 and 30 m s−1 respectively, one on each road. Find, in either order,

(i) the time taken to reach the point of closest approach,

(ii) the shortest distance between the stunt cars. [8]

8 A car of mass 1 tonne reaches the foot of an incline travelling at 30 m s−1. It reaches the top of the
incline 50 seconds later travelling at 10 m s−1. The length of the incline is 1200 m and the angle made
with the horizontal is sin−1 �1

8

�
. The constant resistance to motion is 400 N. Find the average power

developed by the engine of the car. [8]

9 A light string, of natural length 0.5 m and modulus of elasticity 4 N, has one end attached to the ceiling
of a room. A particle of mass 0.2 kg is attached to the free end of the string and hangs in equilibrium.

(i) Find the extension of the string when the particle is in the equilibrium position. [2]

The particle is pulled down a further 0.5 m from the equilibrium position and released from rest. At
time t seconds the displacement of the particle from the equilibrium position is x m.

(ii) Show that, while the string is taut, the equation of motion is ẍ = −40x. [3]

(iii) Find the time taken for the string to become slack for the first time. [3]

(iv) Show that the particle comes to instantaneous rest 0.125 m below the ceiling. [3]

10 One end of a light inextensible string of length a is attached to a fixed point O. A particle of mass m

is attached to the free end of the string and the particle hangs at rest vertically below O. The particle
is projected horizontally with speed u.

(i) Find the tension in the string when it makes an angle � with the downward vertical, whilst the
string remains taut. [6]

(ii) Deduce that the particle will perform complete circles provided that u2 ≥ 5ag. [1]

(iii) It is given that u2 = 4ag. Find

(a) the tension in the string when � = 60�, [1]

(b) the value of �, to the nearest degree, at the instant when the string becomes slack. [2]
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11 A smooth sphere of mass 2 kg has velocity �24i − 7j� m s−1 and is travelling on a horizontal plane,
where i and j are perpendicular unit vectors in the horizontal plane. The sphere strikes a vertical wall.
The line of intersection of the wall and the plane is in the direction �4i + 3j�.

(i) Show that the acute angle between the path of the sphere before the impact and the direction of
the wall is tan−1�4

3

�
. [2]

(ii) After the impact, the velocity of the sphere is �7.2i + 15.4j�m s−1. Find

(a) the coefficient of restitution between the sphere and the wall, [7]

(b) the magnitude of the impulse exerted by the sphere on the wall. [2]

12 A bullet of mass 0.0025 kg is fired vertically upwards from a point O. At time t s after projection the
speed of the bullet is v m s−1 and the resistance to motion has magnitude 0.000 01v2 N.

(i) Show that, while the bullet is rising,

250
dv

dt
= −2500 − v2. 	2


(ii) It is given that the speed of projection is 350 m s−1. Find

(a) the time taken after projection for the bullet to reach its greatest height above O, [5]

(b) the greatest height above O reached by the bullet. [5]
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