Cambridge International Examinations

IGCSE

CENTRE NUMBER

CHEMISTRY

0971/51
Paper 5 Practical Test
May/June 2018
1 hour 15 minutes
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Notes for use in qualitative analysis are provided on pages 11 and 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
Total	

This document consists of $\mathbf{1 1}$ printed pages, $\mathbf{1}$ blank page and $\mathbf{1}$ Insert.

BLANK PAGE

1 You are going to investigate the rate of reaction between dilute hydrochloric acid and aqueous sodium thiosulfate. When these chemicals react they form a precipitate which makes the solution go cloudy. The formation of this precipitate can be used to show how fast the reaction proceeds.

Read all the instructions carefully before starting the experiments.

Instructions

You are going to do five experiments using the apparatus shown.

Experiment 1

- Use the large measuring cylinder to pour $50 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate into the conical flask. Place the conical flask on the printed insert.
- Fill the small measuring cylinder with $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.
- Add the dilute hydrochloric acid to the solution in the conical flask. Start the timer immediately and swirl the mixture.
- View the conical flask from above and measure the time taken for the printed words to disappear from view. Record the time taken in the table on page 4.
- Immediately pour the contents of the conical flask into the quenching bath and rinse the conical flask with distilled water.

Experiment 2

- Use the large measuring cylinder to pour $40 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate into the conical flask, followed by $10 \mathrm{~cm}^{3}$ of distilled water. Place the conical flask on the printed insert.
- Fill the small measuring cylinder with $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.
- Add the dilute hydrochloric acid to the solution in the conical flask. Start the timer immediately and swirl the mixture.
- View the conical flask from above and measure the time taken for the printed words to disappear from view. Record the time taken in the table on page 4.
- Immediately pour the contents of the conical flask into the quenching bath and rinse the conical flask with distilled water.

Experiment 3

- Repeat Experiment 2 but use $35 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate, $15 \mathrm{~cm}^{3}$ of distilled water and $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.

Experiment 4

- Repeat Experiment 2 but use $30 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate, $20 \mathrm{~cm}^{3}$ of distilled water and $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.

Experiment 5

- Repeat Experiment 2 but use $10 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate, $40 \mathrm{~cm}^{3}$ of distilled water and $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.
(a) Complete the table.

experiment	volume of aqueous sodium thiosulfate $/ \mathrm{cm}^{3}$	volume of distilled water/cm	time taken for the printed words to disappear from view/s
1			
2			
3			
4			
5			

(b) Plot your results from Experiments 1-5 on the grid. Draw a smooth line graph.

[3]
(c) Describe the appearance of the mixture in the conical flask at the end of each experiment.
\qquad
(d) (i) From your graph, deduce the time taken for the printed words to disappear from view if Experiment 2 were repeated using $20 \mathrm{~cm}^{3}$ of aqueous sodium thiosulfate and $30 \mathrm{~cm}^{3}$ of distilled water.

Show clearly on the grid how you worked out your answer.
(ii) The rate of reaction can be calculated using the equation shown.

$$
\text { rate of reaction }=\frac{1}{\text { time taken }}
$$

Calculate the rate of reaction using your answer from (d)(i).
\qquad
(e) (i) In which experiment, 1, 2, 3, 4 or 5, was the rate of reaction greatest?
\qquad
(ii) Explain, in terms of particles, why the rate of reaction was greatest in this experiment.
\qquad
\qquad
\qquad
(f) Give the name of a more accurate piece of apparatus for measuring volumes than a measuring cylinder.
\qquad
(g) Suggest the effect on the results of using a $100 \mathrm{~cm}^{3}$ conical flask instead of a $250 \mathrm{~cm}^{3}$ conical flask. Explain your answer.
\qquad
\qquad
(h) Sketch on the grid the graph you would expect if all of the experiments were repeated at a lower temperature. Clearly label your graph.

2 You are provided with two substances, solution A and solid B. Do the following tests on the substances, recording all of your observations at each stage.

tests on solution A

Divide solution \mathbf{A} into four approximately equal portions in three test-tubes and one boiling tube.
(a) Test the pH of the first portion of solution \mathbf{A}.

$$
\begin{equation*}
\mathrm{pH}= \tag{1}
\end{equation*}
$$

(b) Add a strip of magnesium ribbon to the second portion of solution \mathbf{A} in a test-tube. Shake the mixture.
Record your observations.
\qquad
\qquad
(c) Add a spatula measure of copper(II) oxide to the third portion of solution \mathbf{A} in a boiling tube. Warm the mixture gently.
Record your observations.
\qquad

Keep the fourth portion of solution \mathbf{A} for the test in (e).

tests on solid B

(d) Use a spatula to place approximately half of solid \mathbf{B} into a hard glass test-tube. Heat solid \mathbf{B} gently then strongly. Leave the hard glass test-tube to stand for approximately 1 minute. Record your observations.
\qquad
(e) Add the rest of solid \mathbf{B} to the fourth portion of solution \mathbf{A} in a test-tube. Test the gas produced. Record your observations.
test \qquad
result \qquad

Keep the solution from the test in (e) for the test in (f).

Add an approximately equal volume of distilled water to the solution from the test in (e). Shake the solution and divide it into three approximately equal portions in two test-tubes and one boiling tube.
(f) (i) Add a few drops of aqueous sodium hydroxide to the first portion of the solution in a test-tube.
Record your observations.
\qquad
(ii) Now add an excess of aqueous sodium hydroxide to the mixture.

Record your observations.
\qquad
(g) (i) Add a few drops of aqueous ammonia to the second portion of the solution in a test-tube. Record your observations.
\qquad
(ii) Now add an excess of aqueous ammonia to the mixture.

Record your observations.
\qquad
(h) Add a small piece of aluminium foil and about $2 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide to the third portion of the solution in a boiling tube. Gently warm the mixture. Test the gas produced with indicator paper.
Record your observations.
(i) Identify solution \mathbf{A}.
\qquad
(j) Identify solid \mathbf{B}.

3 Potassium chloride is a salt that dissolves in water.
The solubility of a salt is the mass in grams of the salt that dissolves in $100 \mathrm{~cm}^{3}$ of water at a particular temperature.

Plan an investigation to determine the solubility of potassium chloride in water at $40^{\circ} \mathrm{C}$.
You are provided with potassium chloride and common laboratory apparatus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes for use in qualitative analysis Tests for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{Cl}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
bromide $\left(\mathrm{Br}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt.
iodide $\left(\mathrm{I}^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate $\left(\mathrm{NO}_{3}^{-}\right)$ [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ [in solution]	acidify, then add aqueous barium nitrate	white ppt.
sulfite $\left(\mathrm{SO}_{3}{ }^{2-}\right)$	add dilute hydrochloric acid, warm gently and test for the presence of sulfur dioxide	sulfur dioxide produced will turn acidified aqueous potassium manganate(VII) from purple to colourless

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium $\left(\mathrm{Al}^{3+}\right)$	white ppt., soluble in excess, giving a colourless solution	white ppt., insoluble in excess
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
calcium $\left(\mathrm{Ca}^{2+}\right)$	white ppt., insoluble in excess	no ppt., or very slight white ppt.
chromium(III) $\left(\mathrm{Cr}^{3+}\right)$	green ppt., soluble in excess	grey-green ppt., insoluble in excess
copper(II) $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) $\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) $\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test results
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint
sulfur dioxide $\left(\mathrm{SO}_{2}\right)$	turns acidified aqueous potassium manganate(VII) from purple to colourless

Flame tests for metal ions

metal ion	flame colour
lithium $\left(\mathrm{Li}^{+}\right)$	red
sodium $\left(\mathrm{Na}^{+}\right)$	yellow
potassium $\left(\mathrm{K}^{+}\right)$	lilac
$\operatorname{copper}(\mathrm{II})\left(\mathrm{Cu}^{2+}\right)$	blue-green

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

 Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

