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1 Determine the volume of tetrahedron OABC, where O is the origin and A, B and C are, respectively,

the points �2, 3, −2�, �2, 0, 4� and �6, 1, 7�. [3]

2 The Taylor series expansion, about x = 1, of the function y is

y = 1 +
∞Ð

n=1

�−2�n−1�x − 1�n

1 × 3 × 5 ×à × �2n − 1� .

Find the value of
d4y

dx4
when x = 1. [3]

3 M is the matrix

` 1 −2 2

2 −1 2

2 −2 3

a
. Use induction to prove that, for all positive integers n,

Mn

`
1

0

1

a
=
`

2n + 1

2n2 + 2n

2n2 + 2n + 1

a
. �6�

4 A curve has polar equation r = sin 1
2
1 for 0 ≤ 1 < 20.

(i) Sketch the curve. [3]

(ii) Determine the area of the region enclosed by the curve. [4]

5 A curve has equation y = 2x2 + 5x − 25

x − 3
.

(i) Determine the equations of the asymptotes. [3]

(ii) Find the coordinates of the turning points. [5]

(iii) Sketch the curve. [3]

6 (i) Given the complex number Ï = cos1 + i sin 1, show that Ïn + 1

Ïn = 2 cos n1. [1]

(ii) Deduce the identity16 cos51 � cos 51 + 5 cos 31 + 10 cos1. [4]

(iii) For 0 < 1 < 20, solve the equation cos 51 + 5 cos 31 + 9 cos1 = 0. [4]

7 (i) On an Argand diagram, shade the region whose points satisfy

�Ï − 20 + 15i � ≤ 7. �3�

(ii) The complex number Ï1 represents that value of Ï in the region described in part (i) for which

arg�Ï� is least. Mark Ï
1

on your Argand diagram and determine arg�Ï
1
� correct to 3 decimal

places. [4]
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8 The group G, of order 8, consists of the elements �e, a, b, c, ab, bc, ca, abc�, together with a

multiplicative binary operation, where e is the identity and

a2 = b2 = c2 = e, ab = ba, bc = cb and ca = ac.

(i) Construct the group table of G. [You are not required to show how individual elements of the

table are determined.] [4]

(ii) List all the proper subgroups of G. [5]

9 The differential equation (*) is

d2u

dx2
+ 4u = 8x + 1.

(i) Find the general solution of (*). [5]

(ii) The differential equation (**) is

x
d2y

dx2
+ 2

dy

dx
+ 4xy = 8x + 1.

By using the substitution u = xy, show that (*) becomes (**) and deduce the general solution

of (**). [4]

10 (i) Find a vector equation for the line of intersection of the planes with cartesian equations

x + 7y − 6Ï = −10 and 3x − 5y + 8Ï = 48. �5�

(ii) Determine the value of k for which the system of equations

x + 7y − 6Ï = −10

3x − 5y + 8Ï = 48

kx + 2y + 3Ï = 16

does not have a unique solution and show that, for this value of k, the system of equations is

inconsistent. [6]

11 (a) The cubic equation x3 + 2x2 + 3x − 4 = 0 has roots p, q and r. A second cubic equation has roots

qr, rp and pq. Show how the substitution y = 4

x
can be used to determine this second equation.

Hence, or otherwise, find this equation in the form y3 + ay2 + by + c = 0. [6]

(b) The cubic equation x3 − 4x2 + 5x − 4 = 0 has roots !, " and '. You are given that ! is real and

positive, and that " and ' are complex.

(i) Describe the relationship between " and '. [1]

(ii) Explain why �" � = 2�! . [2]

(iii) Verify that ! = 2.70 correct to 3 significant figures, and deduce that Re�"� = 0.65 correct to

2 significant figures. [4]
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12 Let In = Ó 2

0

xn
�

1 + 2x2 dx for n = 0, 1, 2, 3,à .

(i) (a) Evaluate I
1
. [3]

(b) Prove that, for n ≥ 2,

�2n + 4�In = 27 × 2n−1 − �n − 1�In−2. �6�

(c) Using a suitable substitution, or otherwise, show that

I
0
= 3 + 1�

2
ln
�
1 + �

2
�
. �8�

(ii) The curve y = 1�
2

x2, between x = 0 and x = 2, is rotated through 20 radians about the x-axis to

form a surface with area S. Find the exact value of S. [5]

13 (i) By sketching a suitable triangle, show that tan−1 a + tan−1

@
1

a

A
= 1

2
0, for a > 0. [1]

(ii) Given that a and b are positive and less than 1, express tan�tan−1 a ± tan−1 b� in terms of a and b.

[2]

(iii) By letting a = 1

n − 1
and b = 1

n + 1
, use the method of differences to prove that

∞Ð
n=1

tan−1

@
2

n2

A
= 3

4
0. �7�
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