MARK SCHEME for the May/June 2013 series

9795 FURTHER MATHEMATICS

9795/01 Paper 1 (Further Pure Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

9		Reflection in $y=x \tan \frac{1}{8} \pi$: $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right) \quad$ Allow $\cos \left(\frac{1}{4} \pi\right)$'s, etc. Shear // y-axis, mapping $(1,0)$ to $(1,2)$: $\quad\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ Rotation through $\frac{1}{4} \pi$ clockwise about $O: \quad\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ Shear // x-axis, mapping $(0,1)$ to $(-2,1)$: $\quad\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$ Multiplying them together in this order (from right-to-left) $=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ Reflection in $y=x$ NB 1 Multiplying the matrices in the reverse order scores max. $4 \times \mathbf{B 1}+\mathbf{M 0}$; then B1 for correct $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and M1 for "Reflection" and A1 for "in x-axis" NB 2 Incorrect final matrices automatically lose the last 2 marks	B1 B1 B1 B1 M1 A1 M1 A1
10	(a)	$y=k x \cos x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-k x \sin x+k \cos x \text { and } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-k x \cos x-2 k \sin x$ Attempt at 1st and 2nd derivatives using the Product Rule Substituting both of these into the given DE $-k x \cos x-2 k \sin x+k x \cos x=4 \sin x$ Comparing terms to evaluate k : $k=-2$ Aux. Eqn. $m^{2}+1=0$ solved $\Rightarrow m= \pm \mathrm{i}$ Comp. Fn. is $y_{C}=A \cos x+B \sin x \quad$ ft \quad Accept $y_{C}=A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}$ here G. S. is $y=A \cos x+B \sin x-2 x \cos x$ ft provided y_{P} has no arb. consts. \& y_{C} has 2 Do not accept final answer involving complex numbers	M1 M1 M1 A1 M1 A1 B1 B1

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

Page 9	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	01

