MARK SCHEME for the May/June 2013 series

9795 FURTHER MATHEMATICS

9795/02

Paper 2 (Further Application of Mathematics), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	9795	02

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \& \begin{tabular}{l}
Use of \(\mathrm{N}(25,25)\) (in either part)
\[
\begin{aligned}
\& z=\frac{15.5-25}{5}=-1.9 \\
\& \mathrm{P}(\leqslant 15)=0.0287
\end{aligned}
\]
\[
\begin{aligned}
\& \Phi(z)=0.95 \Rightarrow z=1.645 \\
\& x=0.5+25+5 \times 1.645=33.725
\end{aligned}
\] \\
(Allow [1.64,1.65]) \\
(Allow for \(\pm 0.5\)) \\
\(\Rightarrow 34\) narrowboats required. \\
(CAO)
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { M1A1 } \\
\\
\text { A1 } \\
{[4]} \\
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
{[3]}
\end{gathered}
\] \\
\hline 2 \& (i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& \bar{B} \sim\left(156, \frac{64}{9}\right), \bar{G} \sim\left(160, \frac{49}{16}\right) \quad \text { (Can be implied by working.) } \\
& \bar{B}-\bar{G} \sim N\left(-4, \frac{1465}{144}\right) \\
& z=\frac{0-(-4)}{\sqrt{\frac{1465}{144}}}=1.254 \\
& 1-\phi(1.254)=0.1049=0.105(3 \mathrm{sf}) \quad \text { (AWRT } 0.105)
\end{aligned}
$$

Samples are taken from underlying normal distributions \Rightarrow distributions of sample means are normal.

 \&

B1B1
B1M1A1

M1A1

A1

[8]

B1

[1]
\end{tabular}

\hline 3 \& (i)
(ii)

(iii) \& \& | M1A1 |
| :--- |
| A1 [3] |
| M1A1 |
| A1 |
| [3] |
| B1 |
| M1 |
| A1 |
| [3] |

\hline
\end{tabular}

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	$\mathbf{9 7 9 5}$	$\mathbf{0 2}$

\begin{tabular}{|c|c|c|c|}
\hline 4 \& (i)

(ii) \& | $P: \bar{x}_{1}=4.0125 \quad$ S.D. $P .=0.73218 \ldots$ or $0.78273 \ldots$ (or variance) |
| :--- |
| $Q: \bar{x}_{2}=2.55 \quad$ S.D. $Q=0.39895 \ldots$ or $0.43703 \ldots$ (or variance) $\begin{aligned} & \hat{\sigma}^{2}=\frac{4.28875+0.955}{8+6-2}=0.43697 \\ & t_{12}(0.95)=1.782 \end{aligned}$ |
| 90% confidence limits are: |
| $1.4625 \pm\left(1.782 \times 0.66104 \ldots \times \sqrt{8^{-1}+6^{-1}}\right) \quad$ (ft on t value.) |
| 90% confidence interval is $(0.826,2.10)$ (Accept 0.827 from $t=1.78$.) |
| Distributions of broadband speeds are normal. |
| The populations have a common variance. | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { B1 } \\
\\
\text { M1A1 } \\
\text { B1 } \\
\\
\text { M1A1 } \sqrt{ } \\
\text { A1 } \\
{[8]} \\
\text { B1 } \\
\text { B1 } \\
{[2]}
\end{gathered}
$$
\]

\hline 5 \& | (i) (a) |
| :--- |
| (b) |
| (ii) (a) |
| (b) | \& | $k(5+3+2)=1 \Rightarrow k=\frac{1}{10}$ |
| :--- |
| Modal value is -1 . $\begin{aligned} & \mathrm{G}_{y}(t)=\frac{1}{100}\left(5 t^{-1}+3+2 t^{2}\right)^{2}(\mathrm{ft} \text { on } k \text { value and also in }(\mathrm{b}): 1 \text { st two lines. }) \\ & \mathrm{G}_{y}^{\prime}(t)=\frac{1}{50}\left(5 t^{-1}+3+2 t^{2}\right)\left(-5 t^{-2}+4 t\right) \\ & E(Y)=G_{y}^{\prime \prime}(1)=-\frac{10}{50}=-\frac{1}{5} \\ & \mathrm{G}_{y}^{\prime \prime}(\mathrm{t})=\frac{1}{50}\left\{\left(-5 t^{-2}+4 t\right)^{2}+\left(5 t^{-1}+3+2 t^{2}\right)\left(10 t^{-3}+4\right)\right\} \\ & \mathrm{G}_{y}^{\prime \prime}(1)=\frac{1}{50}(1+10 \times 14)=\frac{141}{50}=\sigma^{2}+\frac{1}{25}+\frac{1}{5} \end{aligned}$ |
| (B1 for their $\sigma^{2}+\mu^{2}=\mu$.) $\Rightarrow \sigma^{2}=\frac{129}{50}=2.58(\text { AWRT } 2.58)$ | \& | B1 |
| :--- |
| [1] |
| B1 |
| [1] |
| B1 $\sqrt{ }$ |
| [1] |
| M1A1 $\sqrt{ }$ |
| B1 |
| M1A1 $\sqrt{ }$ |
| A1B1 |
| A1 |
| [8] |

\hline 6 \& (i)

(ii) \& \& $$
\begin{gather*}
\text { B1B1 } \\
\text { [2] } \\
 \tag{AG}\\
\text { M1A1 } \\
\text { B1B1 } \\
\text { B1 } \tag{AG}\\
\text { [5] }
\end{gather*}
$$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\[
G(\text { Median })=\frac{1}{2} \Rightarrow \text { Median }=7
\]
\[
\mathrm{E}(Y)=\int_{0}^{12} \frac{y}{4 \sqrt{16-y}} \mathrm{~d} y
\] \\
Let \(16-y=u^{2}\) (or any other valid substitution) \(\mathrm{E}(Y)=\int_{2}^{4}\left(8-\frac{1}{2} u^{2}\right) \mathrm{d} u\)
\[
\begin{aligned}
\& \mathrm{E}(Y)=\left[8 u-\frac{u^{3}}{6}\right]_{2}^{4}=\left[32-\frac{32}{3}\right]-\left[16-\frac{4}{3}\right]=\frac{20}{3} \\
\& \text { Or: }\left[-\frac{1}{2} y(16-y)^{\frac{1}{2}}\right]_{0}^{12}+\int_{0}^{12}(16-y)^{\frac{1}{2}} \mathrm{~d} y \\
\& =[-12]+\left[-\frac{1}{3}(16-y)^{\frac{3}{2}}\right]_{0}^{12}=\frac{20}{3}
\end{aligned}
\] \\
Or: \(\quad \mathrm{E}(Y)=\int_{0}^{2} \frac{1}{2}\left(8 x-x^{2}\right) \mathrm{d} x\)
\[
=\left[2 x^{2}-\frac{1}{6} x^{3}\right]_{0}^{2}=\frac{20}{3}
\]
\end{tabular} \& M1A1
\([2]\)
B1
M1A1

M1A1
[5]
(M1A1)
(M1A1)
(M1A1)
(M1A1)

\hline 7 \& \& | Work against gravity: $3 \times 10^{3} \times 25 \times 10=750000$ J Let speed of delivery be $v \mathrm{~ms}^{-1}$. $\begin{aligned} & \pi \times 0.05^{2} \times 60 v=3 \\ & \Rightarrow v=\frac{3}{\pi \times 0.05^{2} \times 60}=6.366 \text { or } \frac{20}{\pi} \end{aligned}$ |
| :--- |
| Kinetic energy $\frac{1}{2} \times 3 \times 10^{3} \times 6.366^{2}=(60792)$ $\text { Power }=\frac{750000+60792}{60 \times 1000}=13.5 \mathrm{~kW}$ | \& | M1A1 |
| :--- |
| M1A1 |
| A1 |
| B1 |
| M1A1 [8] |

\hline 8 \& (i)

(ii) \& \begin{tabular}{l}
$$
\begin{aligned}
& 80=\omega^{2}\left(a^{2}-4\right) \\
& 64=\omega^{2}\left(a^{2}-5\right)
\end{aligned}
$$

Dividing: $\frac{5}{4}=\frac{a^{2}-4}{a^{2}-5} \Rightarrow a^{2}=9 \Rightarrow a=3$ $\omega=4, \quad T=\frac{2 \pi}{4}=\frac{\pi}{2}$ seconds.
$$
\begin{aligned}
& \left.t_{1}-t_{2}=\frac{1}{4} \sin ^{-1}\left(\frac{2}{3}\right)-\frac{1}{4} \sin ^{-1}\left(\frac{-\sqrt{5}}{3}\right)(=0.1824 \ldots+0.2102 \ldots)\right) \\
& \Rightarrow t_{1}-t_{2}=0.393, \text { or } \frac{1}{8} \pi, \text { seconds (3sf) }
\end{aligned}
$$

 \&

M1A1

A1A1 [6]

M1A1 A1 [3]
\end{tabular}

\hline
\end{tabular}

9 (i) \quad| $v=4, v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2 \Rightarrow k=\frac{1}{16}$ |
| :--- |
| $-k v^{3}=2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ |
| $\int \frac{1}{16} \mathrm{~d} x=2 \int-v^{-2} \mathrm{~d} v$ |
| $\frac{x}{16}=\frac{2}{v}+c$ |
| $x=0, v=4 \Rightarrow c=-\frac{1}{2}$ |
| $\frac{2}{v}=\frac{x}{16}+\frac{1}{2} \Rightarrow \frac{1}{v}=\frac{x+8}{32}$ |

(AG)
(ii)

$$
\begin{aligned}
& v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{32}{x+8} \\
& \int_{0}^{t} 32 \mathrm{~d} t=\int_{0}^{8}(x+8) \mathrm{d} x \\
& 32 t=\left[\frac{x^{2}}{2}+8 x\right]_{0}^{8}=96 \\
& \Rightarrow t=3
\end{aligned}
$$

Or
$-\frac{v^{3}}{16}=2 \frac{\mathrm{~d} v}{\mathrm{~d} t} \Rightarrow \int \frac{1}{16} \mathrm{~d} t=\int 2 v^{-3} \mathrm{~d} v$

$$
\begin{equation*}
\Rightarrow-\frac{t}{16}+c=-v^{-2} \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
t=0, v=4 \Rightarrow c=-\frac{1}{16} \Rightarrow-\frac{t}{16}-\frac{1}{16}=-\frac{1}{v^{2}} \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow t+1=\frac{16}{v^{2}} \Rightarrow v^{2}=\left(\frac{16}{t+1}\right) \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
x=8, v+2 \Rightarrow 4+\frac{16}{t+1} \Rightarrow t=3 \tag{A1}
\end{equation*}
$$

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	$\mathbf{9 7 9 5}$	$\mathbf{0 2}$

\begin{tabular}{|c|c|c|c|}
\hline 10 \& (i)
(ii) \& \begin{tabular}{l}
Uses \(A\) 's velocity perpendicular to \({ }_{A} V_{B}\) for closest approach. Calculates relevant angle from \((12,16,20) \sim(3,4,5)\) triangle. \\
e.g. \(\cos ^{-1}\left(\frac{4}{5}\right)=36.87^{\circ}\) \\
Finds bearing: \(300^{\circ}+36.87^{\circ}=337^{\circ}\) (nearest degree). \\
Magnitude of \({ }_{A} V_{B}=\sqrt{20^{2}-16^{2}}=12\) \\
Uses distance triangle to find length of travel along relative path: \\
\(15 \cos (120-53.13)^{\circ}=5.892 \mathrm{~km}\) \\
Time \(=\frac{5.892}{12} \times 60=29.5\) minutes
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1A1 A1 \\
[4] M1A1 M1A1 M1A1 [6]
\end{tabular} \\
\hline 11 \& (i)

(ii) \& \begin{tabular}{l}
Conservation of energy:
$$
50.10\left(\frac{4}{5}-\frac{1}{2}\right)=\frac{1}{2} \times 5 v^{2}
$$
$$
\begin{equation*}
v^{2}=60 \Rightarrow v=\sqrt{60} \tag{=7.75}
\end{equation*}
$$

Speed is $7.75 \mathrm{~ms}^{-1}$.

Resolving along string:
$$
\begin{aligned}
& T-50 \times \frac{4}{5}=\frac{5}{10} \times 60 \\
& \Rightarrow T=70
\end{aligned}
$$

Tension is 70 N

Acceleration towards centre:
$$
\frac{60}{10}=6
$$

Newton II along tangent:
$$
50 \times \frac{3}{5}=5 a \Rightarrow a=\frac{30}{5}=6
$$

Magnitude of acceleration

$6 \sec 45^{\circ}=6 \sqrt{2} \mathrm{~ms}^{-2}$

(AG)

(CWO)

 \&

M1A1

A1

[7]

B1

M1A1

A1

[4]
\end{tabular}

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U - May/June 2013	$\mathbf{9 7 9 5}$	$\mathbf{0 2}$

