

Cambridge International Examinations Cambridge Pre-U Certificate

FURTHER MATHEMATICS

9795/02 May/June 2016

Paper 2 Further Applications of Mathematics MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document consists of 7 printed pages.

P	age 1	Mark Scheme				Paper		
-	- J -	Cambridge Pre-U – May/June 2016			Syllabus 9795	02		
1	(i)	$75 \pm 1.96 \sqrt{\frac{40^2}{500} \times \frac{500}{499}} = (71.5, 78.5)$	M1 B1 A1 A1 [4]	$75 \pm zs$, <i>s</i> involving 500 z = 1.96, allow from no 5 Variance correct Both limits correct to 3st	500	Condone points for $\frac{500}{499}$		
	(ii)	No, as the Central Limit Theorem applies <i>OR</i> as <i>n</i> is large	B1 [1]	"No" and mention CLT focus on different distrib irrelevancies				
2	(i)	N(120, $\sigma^2 = 0.8^2 \times 1200 [= 768]$ $1 - \Phi((140 - 120)/\sqrt{768})$ = 0.235(3)	M1 M1 A1 A1 [4]	Normal, mean 120 or 1.2 Allow 0.8×1200 etc Both parameters correct Answer, in range [0.235, OR: P(\geq 175) from N (175 - 150)/ $\sqrt{12}$ 0.235(3)	, 0.236] [(150, 200)	0.236] 150, 200) M1		
	(ii)	$B_1 + B_2 + B_3 + B_4 - S_1 - S_2 - S_3$ ~ N(60,) Variance 4×1200 + 3×1500 = 9300 $\Phi\left(\frac{0-60}{\sqrt{9300}}\right) = \Phi(-0.622) = 0.267$	M1 M1 A1 A1 [4]	Consider $\pm (B_1 + B_2 + B_3 + B_3)$ Normal, mean 60 Correct variance Answer, a.r.t. 0.267 [NB: $\Phi(-60/\sqrt{33700}) = 0$	[0.2699]	or $4B - 3S$		
3	(i)	$\sum t^{r} P(r) = \sum_{r=0}^{n} t^{r} {}^{n}C_{r} p^{r} (1-p)^{n-r}$ $= \sum_{r=0}^{n} (pt)^{r} {}^{n}C_{r} (1-p)^{n-r}$ $= (1-p+pt)^{n} AG$	M1 A1 A1 [3]	Indicate correct final term Collect p^r and t^r and correspondence	t) and binomial probabilities et final term t^{r} and correctly obtain given + pt) ¹ , M1A1; answer, A1			
	(ii)	$ \left(\frac{3}{4} + \frac{1}{4}t\right)^8 \left(\frac{1}{4} + \frac{3}{4}t\right)^8 $ $ = (3+t)^8 (1+3t)^8 / 4^{16} $ $ = \left(\frac{3}{16} + \frac{1}{16}t(10+3t)\right)^8 $ $ = \left(\frac{3}{16}\right)^8 (1 + \left\lceil\frac{10}{3} + t\right\rceil t)^8 $	M1 A1	Substitute and multiply Correctly obtain given as	nswer			
		<i>t</i> term: $\left(\frac{3}{16}\right)^8 \left[8 \times \frac{10}{3}\right] = 4.07 \times 10^{-5}$	M1M1 A1 [5]	Select <i>t</i> term; method for Answer OR: attempt to find C $8(\frac{3}{16})^8(\frac{10}{3}+2t)(1)$ $= 4.07 \times 10^{-5}$	G'(0)	M1		

Pa	age 2	Mark Sch		Syllabus Paper
		Cambridge Pre-U –	May/Jun	ne 2016 9795 02
4	(i)	Number of goals scored by home team is independent of number of goals scored by away team	B1 [1]	Not just <i>goals</i> independent. Extras, including conditions already implied by given Poisson distributions: B0
	(ii) (a)	$e^{-4.2n}(1+4.2n+\frac{(4.2n)^2}{2!}+\frac{(4.2n)^3}{3!})$	M1 A1 A1 [3]	Po(4.2 <i>n</i>) implied Correct ± 1 term Fully correct expression, aef. SR Po(4.2): Fully correct formula B1
	(b)	$e^{-2.4}e^{-1.8}(1+2.4\times1.8)$ = 0.0798	M1 A1 A1 [3]	Individual Poisson distributions multipliedCorrect expression[= 0.0150 + 0.0647]Answer, a.r.t. 0.080[0.07977]
5	(i)	<i>n</i> large p close to $\frac{1}{2}$	B1 B1 [2]	Or <i>np</i> > 5 <i>nq</i> > 5 [<i>not npq</i> > 5]
	(ii)	$\frac{24.5 - \mu}{\sigma} = \Phi^{-1}(0.8282) = 0.947$ $\frac{27.5 - \mu}{\sigma} = \Phi^{-1}(0.9697) = 1.759$	M1 A1 B1	One standardised, = Φ^{-1} , allow σ^2 , cc, 1– errors LHS of both equations correct including signs and cc Both <i>z</i> -values correct to 3 sf, ± 1 in third dp
	<i>/</i> ··· `	$\mu = 21, \sigma = 3.69$	M1 A1 [5]	Solve to find both μ and σ μ , a.r.t. 21.0; σ , in range [3.69, 3.70]
	(iii)	$q = npq/np = 21/3.694^2$ [= 0.65] p = 0.35, n = 60	M1 A1ft A1 [3]	Correct method of solution for <i>n</i> , <i>p</i> or <i>q</i> , allow \sqrt{npq} $npq = \sigma^2$ [not σ], ft on their npq [13.65] <i>p</i> , a.r.t. 0.350 and <i>n</i> = 60 [integer] only [not 60.0]
6	(i)	$\int_{0}^{\infty} 4x e^{-2x} e^{tx} dx = \int_{0}^{\infty} 4x e^{-(2-t)x} dx$ $= \left[\frac{4x e^{-(2-t)x}}{(t-2)}\right]_{0}^{\infty} + \int_{0}^{\infty} \frac{4e^{-(2-t)x}}{2-t} dx$ $\left[-\frac{4e^{-(2-t)x}}{(2-t)^{2}}\right]_{0}^{\infty} = \frac{4}{(2-t)^{2}}$	M1 A1 M1 A1 A1	Attempt $\int e^{tx} f(x) dx$, limits somewhere Combine into single e term Use parts, right way round Correct indefinite integral Correct final answer, cwo, allow $(t-2)^2$ but must use integral that visibly converges, or otherwise indicate the issue
	(ii)	<i>t</i> < 2	[5] B1 [1]	
	(iii)	$\left[\frac{4}{(2-t)^2}\right]^3 = \frac{64}{(2-t)^6}$ $= (1-\frac{1}{2}t)^{-6} = 1+3t+\frac{21}{4}t^2+\dots$	M1 A1 M1	$[M_{X}(t)]^{3}$ [Not cubed: M0A0 M1A0 M1A0] Series expansion <i>or</i> differentiate once $M'(t) = \frac{384}{(2-t)^{7}}, M''(t) = \frac{2688}{(2-t)^{8}}$
		E(Y) = 3 $E(Y^2)/2 = 21/4$ so $E(Y^2) = 10.5$ $Var(Y) = 10.5 - 3^2 = 1.5$	A1 M1 A1	$E(Y) = 3 \text{ correctly obtained or implied} 2 \times \text{coeff of } t^2 \text{ or } M''(0) - [M'(0)]^2 Var(Y) = 1.5 \text{ or exact equivalent, cwo}$
			[6]	

Ρ	age 3	Mark Sch	ieme		Syllabus	Paper	
		Cambridge Pre-U – May/June 2016			9795	02	
7	(i)	$\int_0^k x \frac{3x^2}{k^3} dx = \frac{3}{4}k$	M1 A1	Attempt $\int x f(x)$, correct li $\frac{3}{4} k$, ae exact f			
		$E(\frac{4}{3}X) = k$, so $\frac{4}{3}X$ unbiased AG	A1 [3]	Must state "unbiased"			
	(ii)	$P(X \le x) = \int_0^k \frac{3x^2}{k^3} dx = \left(\frac{x^3}{k^3}\right)$	B1	Needs convincing deriva			
		$P(M \le m) = \left(\frac{x^3}{k^3}\right)^3 = \frac{x^9}{k^9}$	M1	$\left[\mathrm{F}_{X}(x)\right]^{3}$			
		(K) K	M1	Differentiate			
		$f_M(x) = 9\frac{x^8}{k^9} \qquad AG$	A1 [4]	Full derivation of AG. Ig	gnore other ra	nges	
	(iii)	$\int_0^k x9 \frac{x^8}{k^9} dx = \frac{9}{10}k$ Hence $E_2 = \frac{10}{9}M$	M1 A1 A1ft [3]	Attempt $\int x f_M(x)$, ignore limits Correct $E(M)$ If $E(M) = kc$, allow M/c			
8		PE lost = $0.4g \times 3 \sin 20^{\circ}$ [4.104] Initial KE = $\frac{1}{2} \times 0.4 \times 0.5^{2}$ [0.05]	<i>mgh</i> attempted, with trig Both KEs attempted	5			
		Final KE = $\frac{1}{2} \times 0.4 \times 2.5^2$ [1.25] Difference = Work done by friction	M1	Work/Energy principle u terms	le used, no extra/missing		
		2.9045 = 3F Therefore $F = 0.968$ N	M1	Use $\Delta E = F \times s$			
		Therefore $F = 0.908$ N	Al	Answer, a.r.t. 0.968			
			[5]	-	used: answer	B2]	
9	(i)	R(\uparrow_Q): $T - 1.5g = 0$ [$T = 15$]	M1	Resolve vertically for 1. implied e.g. by 2	-	n be	
		$R(\uparrow_{P}): T\cos\theta - 1.2g = 0$ [15 cos θ = 12]	M1	Resolve vertically for 1.	Resolve vertically for 1.2 kg mass		
		$\Rightarrow \cos\theta = 0.8$ Distance below = 0.12/tan θ	A1				
		= 0.16 m	A1 [4]	Correct value of <i>h</i>			
	(ii)	T = 1.5g	B1	Value of T used [= 15]			
		$R(\rightarrow_{P}): T\sin\theta = 1.2r\omega^{2} [=9]$	M1	Resolve horiz for <i>P</i> and use $r\omega^2$ or v^2/r Correct equation, and $v = r\omega$ if <i>v</i> used			
		$\Rightarrow 1.5g \sin\theta = 1.2 \times 0.12 \times \omega^2$ [a = 7.5]	A1				
		$\Rightarrow \qquad \omega = \sqrt{62.5} = 7.91 \text{ rad s}^{-1}$	A1 [4]	Answer, in range [7.9, 7	.91] or $\frac{5}{2}\sqrt{10}$		

Pa	age 4	Mark Sch	neme		Syllabus	Paper	
		Cambridge Pre-U – May/June 2016			9795	02	
10	(i)	$N = 80$ $M(X): F \times 5 \sin \theta = 80 \times 2.5 \cos \theta$ $F \le 0.4N$ $\tan \theta \ge 1.25$	B1 M1 M1 M1 A1	Moments about any poir sin A: $R \times 5 \sin \theta = 80 \times 2.5 \cos \theta$ M: $R \times 2.5 \sin \theta + F \times 2.5 \cos \theta$ Use $F \le \mu N$ or $F = \mu N$ Solve equations to obtain	[R = F = 0.4N = 32] + F×2.5cos θ = N×2.5cos θ T = μN		
	(ii)	$\theta_{\min} = 51.3^{\circ} \text{ or } 51.4^{\circ}, 0.896$ $F \times 5\sin \theta = (80 \times 2.5 + 750d) \cos \theta$ Use 60° and μ to obtain $d_{\max} = 3.57$	[5] M1* depM1 A1 [3]	0.896 Moments equation with variable (d) $[F = 332]$ $[332 \times 5 \times 0.5 = 100\sqrt{3} + 337\sqrt{3}d]$ Answer, a.r.t. 3.57 or 3.56			
11	(i)	Driving force = $32000/v$ $800\frac{dv}{dt} = \frac{32000}{v} - 20v$ $\frac{dv}{dt} = \frac{1600 - v^2}{40v}$ AG	M1 A1 [2]	dv/dt	variables and attempt to integrate indefinite integral, aef alue of c ubject, using e, allow v^2		
	(ii)	$\int \frac{40v}{1600 - v^2} dv = \int dt$ $c - 20 \ln(1600 - v^2) = t$ $c = 20 \ln 1600$ [147.56] $t = 20 \ln \left(\frac{1600}{1600 - v^2}\right)$ $v = 40\sqrt{1 - e^{-t/20}}$ Tends to 40	M1 A1 A1 A1 B1 [6]	Correct indefinite integr Correct value of <i>c</i> Make <i>v</i> subject, using e, Correct expression for <i>v</i>			
12	(i)	$ \begin{array}{c} \begin{array}{c} u/2 \\ \sqrt{3}u/ \\ \end{array} \\ \hline v \\ w \\ \hline v \\ w \\ \hline x \end{array} $ Mom ^m (\rightarrow): $mu \cos 30 = mw + mx$ Rest ⁿ : $x - w = 0.9\sqrt{3}u/2$ Solve: $w = 0.0433u$ Mom ^m (\uparrow): $mu \sin 30 = vm$ so $v = 0.5u$ $\Rightarrow \text{ direction is } \tan^{-1}(0.5/0.0433)$ $= 85.05^{\circ} \text{ to } x\text{-axis}$	M1 M1 A1 B1 A1 [5]	$\left[\frac{\sqrt{3}}{2}u = w + x\right]$ C of M equation, needn't have <i>m</i> , ignore signs, needs cos and sin Restitution equation, ignore signs of LHS Correctly obtain $w = a.r.t. \ 0.0433u \ [= \sqrt{3}u/40]$ Obtain, state, or use $v = u/2$ Direction, [85.0°, 85.1°] to <i>x</i> -axis (5° or 4.9° to <i>y</i>)			
	(ii)	$u \cos 30 = w + x, ue \cos 30 = x - w$ $\Rightarrow 2w = u \cos 30(1 - e) \text{ but } e \le 1$ so w cannot be negative	M1 M1 A1 [3]	One general equation Second equation, and use $e \le 1$ Correctly deduce given conclusion			

Page 5	Mark Scheme			Syllabus	Paper			
	Cambridge Pre-U – May/June 2016			9795	02			
13 (i)	Solution 1: <i>V</i> , <i>H</i>							
	$y = 30t \sin 50^{\circ} - 5t^{2}; x = 30t \cos 50^{\circ}$ [y = 26.2] x = 48.2	M1A1 A1	Both equations attempted; both correct Correct value of x SC: If M0, $y = 26.2$ gets B1					
	Height of slope = $x \tan 10^\circ = 8.5$ Difference = 17.7	M1 A1 [5]	Find height Correct answer [17.703]					
	Solution 2: , ⊥							
	$y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $= 17.43$ Height above field = $y \div \cos 10^{\circ}$ $= 17.7$	M1A1 A1 M1 A1						
(ii)	Solution 1: <i>V</i> , <i>H</i>							
	$30t \sin 50^{\circ} - 5t^{2} = 30t \cos 50^{\circ} \tan 10^{\circ}$ t = 3.916 $PX = 30t \cos 50^{\circ} \div \cos 10^{\circ}$ X = 76.7	M1 A1 M1 A1 [4]	Put $y = x \tan 10^{\circ}$ and solve Correct value of <i>t</i> , can be implied Calculate $x \div \cos 10^{\circ}$ or $y \div \sin 10^{\circ}$ <i>X</i> , a.r.t. 76.7 [76.684]					
	Solution 2: , ⊥							
	$Y = 30t \sin 40^{\circ} - 5t^{2} \cos 10^{\circ}$ $Y = 0 \text{ at} \qquad t = 3.916$ $X = 30t \cos 40^{\circ} - 5t^{2} \sin 10^{\circ}$ PX = 76.7	M1 A1 A1 A1	Y equation, allow sign/tr Correct value of t , can be X equation, allow sign/tr X, a.r.t. 76.7 [76.684]	e implied ig errors (3 te	,			
	Solution 3: traj $Y = X \tan 50 - \frac{10X^2 \sec^2 50}{2 \times 30^2}$ $= x \tan 10^\circ$	M1 A1	Use trajectory equation All correct					
	$PX = 180(\tan 50 - \tan 10)\cos^2 50 =$ 76.7	M1 A1	Solve for <i>X</i> <i>X</i> , a.r.t. 76.7 [76.684]	l				

Page 6	Mark Sci	heme		Syllabus	Paper	
	Cambridge Pre-U –	May/Jun	ine 2016 9795 02			
14 (i)	$T - mg = 0 \implies \frac{3}{0.5} \times e = 0.3g$	M1	Use N2 for equilibrium			
	$\Rightarrow e = 0.5$	A1 [2]	Equilibrium extension 0.	I variable on both or $3h = 3(h - \frac{1}{2})^2$ tic equation btract 0.5 etc if		
(ii)	GPE lost = EPE gained: $3(0.5+x) = \frac{1}{2} \frac{3}{0.5} x^2$ [= 3x ²] Solve to get $x = \frac{1+\sqrt{3}}{2} = 1.37$	M1* depM1 A1 A1 [4]	Use cons of energy, need sides, e.g. $3(1+h) = 3(h+\frac{1}{2})^2$ d Obtain and solve quadra Correct equation, add/su necessary Solve to get a.r.t. 1.37 or			
(iii)	$0.3\ddot{x} = 0.3g - \frac{3}{0.5}(x+e)$ $\ddot{x} = -20x$	M1 A1 B1 [3]	Use N2 including extens All correct, check signs Obtain correct value of a		working	
(iv)	$x = \frac{\sqrt{3}}{2} \cos \sqrt{20}t$ x = 0.5 at ωt = 0.9553 or 5.3279	M1 A1ft M1	Use $x = a \cos \omega t$ or $a \sin a$ a correct ft (= their (ii) – Equate to (±) e and use control e.g. $\frac{2}{\sqrt{20}} \cos^{-1} \left(-\frac{1}{\sqrt{3}} \right)$ $\frac{1}{\sqrt{20}} \left(\frac{\pi}{\omega} + 2\sin^{-1} \left(\frac{1}{\sqrt{3}} \right) \right)$	their (i)), ω orrect trig me	from (iii)	
	<i>t</i> = 0.2136 or 1.1913 Difference = 0.978	A1 A1 [5]	One correct value of <i>t</i> Correct final answer	[0.9777]		