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1 (a) Express
1

�2n − 1��2n + 3� in partial fractions. [2]

(b) Hence evaluate

∞Ð
n=1

1

�2n − 1��2n + 3� . [3]

2 The curve C has equation y = x

1 − x + x2
.

(a) (i) Show algebraically that C exists only for −1
3
≤ y ≤ 1. [3]

(ii) Hence, or otherwise, find the coordinates of the turning points of C. [3]

(b) Sketch C, showing all significant features. [3]

3 (a) (i) Determine the possible values of the real numbers a and b for which �a + ib�2 = 28 + 96i.

[3]

(ii) Deduce the solutions of the equation z4 = 28 + 96i. [3]

(b) The locus of points in the Argand diagram given by �z − 28 − 96i � = d passes through the origin.

Sketch this locus and state the value of the constant d. [2]

4 A curve has equation y = cosh x. The length of the arc of the curve between the points where x = 0

and x = 1 is denoted by L.

(a) Determine, in terms of e, the exact value of L. [4]

A rational approximation for L is to be found using the first few terms of the Maclaurin series for

cosh x.

(b) (i) Calculate the approximation for L found when the first three non-zero terms are used. [3]

(ii) Explain why any approximation for L found by this method will be an under-estimate, no

matter how many terms of the series are used. [1]

5 A group G of order 6 consists of functions (of x) under the operation of composition of functions.

Two of the elements of G are p�x� = 1

x
and q�x� = 1 − x.

(a) State the identity element, i�x�, of G. [1]

(b) Determine, as functions of x, the remaining three elements of G. [3]

(c) List all the subgroups of G. [4]

6 Solve the differential equation x
dy

dx
− y = x2�

1 + x2
, given that y = 3 ln 2 when x = 3

4
, giving your answer

in the form y = f�x�. [8]
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7 Let M =
@
2k − 1 k − 1

1 − k 1 − 8k

A
, where k is a non-zero constant.

(a) Determine the value of k for which M is singular. [3]

(b) (i) Find the value of k for which the transformation T given by the matrixM is a rotation about

the origin. [3]

(ii) Describe T fully in this case. [2]

8 The equation x3 − px2 + qx − r = 0, where p, q and r are constants, has roots !, " and '. Express each
of the following in terms of p, q and r.

(a) !2 + "2 + '2 [2]

(b) !2�" + '� + "2�' + !� + '2�! + "� [3]

(c) !3 + "3 + '3 [3]

9 Let S
n
=

nÐ
r=1

�cosr1 cos r1�. Use mathematical induction to prove that, for all positive integers n,

S
n
= cosn+11 sin n1

sin1 . [7]

10 (a) Use the definitions of sinh x and cosh x in terms of exponentials to show that

tanh x = e2x − 1

e2x + 1
. [2]

(b) (i) Use the substitution u = e2x to show that tanh 2x − tanh x = 0.3 can be written as a cubic

equation in u. [3]

(ii) Hence solve the equation tanh 2x − tanh x = 0.3, giving each answer in its simplest exact

logarithmic form. [5]

11 The planes Π
1
and Π

2
have equations r.�8i + j − 3k� = 20 and r.�−i + j + k� = 3 respectively. The

points V andW have coordinates �3, −1, 1� and �3, 2, 4� respectively.

(a) Show that V is in Π
1
and thatW is in Π

2
. [1]

The line of intersection of Π
1
and Π

2
is denoted by L.

(b) Find a vector equation for L in the form r = a + ,d, where the vectors a and d have integer

components. [4]

A point U on L has coordinates which are all positive integers.

(c) Show that there is only one possible position for U and state its coordinates. [3]

(d) Determine the volume of tetrahedron OUVW . [3]
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12 Let I
n
= Ó

1
2
π

0

sinn1 d1, where n ≥ 0.

(a) Prove that nI
n
= �n − 1�I

n−2 for n ≥ 2. [4]

The curve B has polar equation r = 4 sin21 cos1 for −1
2
π ≤ 1 ≤ 1

2
π.

(b) Sketch B. [3]

(c) (i) Show that the area of the plane enclosed by B can be written in the form aI
4
+ bI

6
for

integers a and b to be determined. [2]

(ii) Deduce the exact value of this area. [3]

(d) Determine a cartesian equation for B. [2]

13 (a) Determine the five smallest positive values of 1 for which cos 51 = 1
2
. [2]

(b) (i) Let z = cos1 + i sin1. Show that zn + z−n = 2 cos n1 for positive integers n. [2]

(ii) Hence express 2 cos 51 as a polynomial in x, where x = 2 cos 1. [5]

(iii) By considering the result of part (a), find, in an exact trigonometric form, the roots of

x4 + x3 − 4x2 − 4x + 1 = 0. [3]

(c) Use the result of part (b)(iii) to show that sin
�
1
30
π� sin� 7

30
π� sin�11

30
π� sin�13

30
π� = 1

16
. [4]
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