Advanced Subsidiary GCE Electronics

Unit F611: Simple Systems

Specimen Paper

Candidates answer on the question paper.
Additional Materials:
Scientific calculator

SPECIMEN

F611 QP

Candidate
Name

Centre
Number

Candidate

 Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- Unless otherwise indicated, you can assume that:
- op-amps are run off supply rails at +15 V and -15 V

FOR EXAMINERS' USE		
Qu.	Max.	Mark
1	11	
2	10	
3	3	
4	18	
5	20	
6	12	
7	8	
8	8	
TOTAL	90	

- logic circuits are run off supply rails at +5 V and 0 V
- You are advised to show all the steps in any calculations.
- The total number of marks for this paper is 90 .

This document consists of 16 printed pages.

Data Sheet

resistance	$R=\frac{V}{l}$
power	$P=V I$
series resistors	$R=R_{1}+R_{2}$
time constant	$\tau=R C$
monostable pulse time	$T=0.7 R C$
relaxation oscillator period	$T=R C$
frequency	$f=\frac{1}{T}$

Answer all questions.
1 (a) Fig. 1.1 shows a two-input AND gate with inputs A and C and output P.

Fig. 1.1
(i) Complete the truth table for this gate.

A	C	P
0	0	
0	1	
1	0	
1	1	

(ii) Write down a Boolean expression for the output P.

$$
P=
$$

(b) Fig. 1.2 shows a two-input NOR gate with inputs A and B and output G.

Fig. 1.2
(i) Complete the truth table for this gate.

A	B	G
0	0	
0	1	
1	0	
1	1	

(ii) Write down a Boolean expression for the output G.

$$
G=.
$$

(c) (i) For the circuit shown in Fig. 1.3, write down a Boolean expression for C, P, G and Q in terms of only A and B .

Fig. 1.3
(ii) Use the rules of Boolean algebra to show that Q does not depend on A.

2 The lamp of Fig. 2.1 glows whenever the switch is closed. This indicates that 15 V is applied to the system.

Fig. 2.1
(a) The lamp is rated at $3.5 \mathrm{~V}, 0.5 \mathrm{~W}$. Show that the current in the lamp is about 150 mA when it operates at its rated voltage.
(b) Calculate a suitable value for the resistor in series with the lamp. Include the unit with your answer.
resistance =
(c) Calculate the power dissipated in the resistor when the lamp is on.
power =
(d) (i) Put a ring around the most suitable power rating for the resistor

$$
\begin{array}{lllllll}
0.5 \mathrm{~W} & 1 \mathrm{~W} & 1.5 \mathrm{~W} & 2 \mathrm{~W} & 3 \mathrm{~W} & 5 \mathrm{~W} & 10 \mathrm{~W}
\end{array}
$$

(ii) Justify your choice \qquad

3 (a) A logic circuit has the following truth table.

C	D	E
0	0	0
0	1	1
1	0	0
1	1	0

$$
E=C \cdot \bar{D} \quad E=C+\bar{D} \quad E=\bar{C} \cdot D \quad E=\bar{C}+D
$$

Circle one of the Boolean expressions above which correctly describes this truth table.
(b) A logic circuit has the following truth table.

K	L	M
0	0	1
0	1	1
1	0	1
1	1	0

$$
M=\bar{K} \cdot \bar{L} \quad M=\bar{K}+\bar{L} \quad M=\bar{K} \cdot L \quad M=K+L
$$

Circle one of the Boolean expressions above which correctly describes this truth table.
(c) A logic circuit has the following truth table.

F	G	H
0	0	0
0	1	0
1	0	0
1	1	1

$$
H=\overline{F \cdot G} \quad H=\overline{F+G} \quad H=F+G \quad H=\overline{\bar{F}+\bar{G}}
$$

Circle one of the Boolean expressions above which correctly describes this truth table.

4 A relaxation oscillator circuit is shown in Fig. 4.1
\qquad

Fig. 4.1
(a) The oscillator has a frequency of 270 Hz . Show that the period of the oscillator is about 4 ms .
(b) Calculate the value of the capacitor required to produce a period of 4 ms .

The signal at A has been drawn on the graph below. Draw the signal at B on the graph below.

Fig. 4.2
(c) The circuit is used to make a loud sound for an alarm.
(i) Draw on the diagram of Fig. 4.1 to show how you would connect a speaker and driver to produce a loud sound.
(ii) Label the three terminals of the MOSFET
(iii) Explain why the driver is needed.
\qquad

5 A light sensor circuit is shown Fig. 5.1.

Fig. 5.1
(a) The circuit contains a 8.2 V zener diode.
(i) Sketch a graph on the axes in Fig. 5.2 to show the behaviour of a 8.2 V zener diode.

Fig. 5.2
(ii) Explain why the voltage at A is held at 8.2 V .
\qquad
\qquad
\qquad
\qquad
(iii) State the voltage across the resistor R1.
(iv) Calculate the current through the resistor R1.

> Current = ... mA [2]
(v) State the current in the zener diode.

> Current = .. mA [1]
(b) (i) The resistance of the LDR is $1 \mathrm{k} \Omega$ when the light intensity is 100 lux. Calculate the voltage at B when the light intensity on the LDR is 100 lux.

Voltage at $\mathrm{B}=$

(ii) Describe what will happen to the LED when the light intensity on the LDR is 100 lux. The quality of your written communication will be assessed in this question.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6 The circuit of Fig. 6.1 uses two NAND gates.
\qquad

Fig 6.1
(a) State the name of the circuit in Fig. 6.1.
(b) Calculate the values of the capacitor and resistor in Fig. 6.1 to produce a pulse width of 2.5 s .
C1 $=$ $\mu \mathrm{F}$
R1 $=$ $\mathrm{k} \Omega$ [3]
(c) Complete the timing diagram in Fig. 6.2 for the voltages at the labelled points in Fig. 6.1.
\square

Fig 6.2
(d) The signal at W is produced by a switch which produces a logic 0 when the switch is pressed. Draw the switch and a resistor on Fig. 6.1.

7 A student uses an oscilloscope to investigate the output from a circuit. Fig. 7.1 shows the screen of the oscilloscope. The Y sensitivity is $2 \mathrm{v} / \mathrm{division}$ and the timebase is $5 \mathrm{~ms} / \mathrm{division}$.

Fig. 7.1
(a) Calculate the amplitude of the signal in Fig. 7.1
(b) Calculate the period of the signal in Fig. 7.1
(c) Calculate the frequency of the signal in Fig. 7.1

8 A circuit to produce a time delay is shown in Fig. 8.1.

Fig. 10.1
(a) Calculate the time constant of the resistor-capacitor network in Fig. 8.1.
(b) When the switch is pressed the voltage at the output is 5 v . Calculate how long after the switch is released does the voltage at the output become 2.5 v .

Time to get to $2.5 \mathrm{v}=$
(c) Draw a voltmeter with connections to measure the output voltage on Fig. 8.1.
(d) Sketch a graph on the axes below to show how the voltage at the output changes with time.
voltage

Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary GCE

GCE ELECTRONICS

Unit F611: Simple Systems
Specimen Mark Scheme
The maximum mark for this paper is $\mathbf{9 0}$.

Question Number	Answer	Max Mark
2(a)	0.5/3.5	[1]
	$=0.143 \mathrm{~A}$	[1]
	$(0.143 \times 1000)=143 \mathrm{~mA}$ ((0 rrect conversion to mA)	[1]
(b)	$\underline{(15-3.5)}$	[1]
	0.143	[1]
	$=81 \Omega$ ecf incorrect voltage	[1]
(c)	11.5×0.143 accept 150 mA	[1]
	$=1.64 \mathrm{~W} \quad$ not answer in mW	[1]
(d)(i)	2W	[1]
(ii)	2 W is maximum power, this the lowest value/smallest that will operate at 1.64 W	[1]

Question Number	Answer	Max Mark
3(a)	$E=\bar{C} \cdot D$	$[1]$
(b)	$M=\overline{K \cdot L}$	$[1]$
(c)	$H=\overline{\bar{F}}+\bar{G}$	$[1]$

Question Number	Answer	Max Mark
(ii)	drain	
	gate	source
(iii)	Schmitt trigger cannot provide sufficient current to drive speaker wtte driver acts as current amplifier wtte	[1]

Question Number	Answer	Max Mark		
(b)(ii)	1 mark for each of the following points: inverting input > non-inverting input output saturates low when output low LED reverse biased so no current flows through LED so LED will be off.	[1] [1]		
This question is assessed for the quality of written communication.				
The candidate expresses complex ideas extremely clearly and				
fluently. Sentences and paragraphs follow on from one another				
smoothly and logically. Arguments are consistently relevant and well				
structured. There will be few, if any, errors of grammar, punctuation				
and spelling.			\quad	[1]
:---				
The candidate expresses straightforward ideas clearly, if not always				
fluently. Sentences and paragraphs may not always be well				
connected. Arguments may sometimes stray from the point or be				
weakly presented. There may be some errors of grammar,				
punctuation and spelling, but not such as to suggest a weakness in				
these areas.	\quad	The candidate expresses simple ideas clearly, but may be imprecise		
:---				
and awkward in dealing with complex or subtle concepts. Arguments				
may be of doubtful relevance or obscurely presented. Errors in				
grammar, punctuation and spelling may be noticeable and intrusive,				
suggesting weaknesses in these areas.				
The language has no rewardable features.				

Question Number	Answer	Max Mark
7(a)	4squares	[1]
	x 2 v /square	[1]
	$=8 \mathrm{v}$	[1]
(b)	4squares	[1]
	$\times 5 \mathrm{~ms} /$ square	[1]
	$=20 \mathrm{~ms}$	[1]
(c)	$\mathrm{f}=1 / 0.020$ (eor)	[1]
	$=50 \mathrm{~Hz} \quad(0.05 \mathrm{~Hz}[1$ mark] $)$	[1]

| Question
 Number | Answer | Max
 Mark |
| :---: | :---: | :---: | :---: |
| 8(a) | | |
| (b) | | |
| (c) | | |

Assessment Objectives Grid (includes QWC)

Question	A01	AO2	AO3	Total
1(a)(i)	2			2
1(a)(ii)	1			1
1(b)(i)	2			2
1(b)(ii)	1			1
1(c)(i)		3		3
1(c)(ii)		2		2
2(a)		3		3
2(b)		3		3
2(c)		2		2
2(d)	2			2
3(a)		1		1
3(b)		1		1
3(c)		1		1
4(a)	3			3
4(b)	1	2		3
4(c)	2	2		4
4(d)(i)		5		5
4(d)(ii)	1			1
4(d)(iii)	2			2
5(a)(i)	2	1		3
5(a)(ii)	3			3
5(a)(iii)		1		1
5(a)(iv)	2			2
5(a)(v)	1			1
5(b)(i)		2		2
5(b)(ii)	3	5		8
6(a)	1			1
6(b)		3		3
6(c)	5			5
6(d)	1	2		3
7(a)	2	1		3
7(b)	2	1		3
7(c)	1	1		2
8(a)	2			2
8(b)	1			1
8(c)		1		1
8(d)	1	3		4
Totals	44	46	0	90

