OCR ADVANCED SUBSIDIARY GCE IN MATHEMATICS (3890, 3891 and 3892)

OCR ADVANCED GCE
 IN MATHEMATICS (7890, 7891 and 7892)

Specimen Question Papers and Mark Schemes

These specimen question papers and mark schemes are intended to accompany the OCR Advanced Subsidiary GCE and Advanced GCE specifications in Mathematics for teaching from September 2004.

Centres are permitted to copy material from this booklet for their own internal use.

The specimen assessment material accompanying the new specifications is provided to give centres a reasonable idea of the general shape and character of the planned question papers in advance of the first operational examination.

CONTENTS

Unit Name
Unit Code
Level
Unit 4721: Core Mathematics 1C1AS
Unit 4722: Core Mathematics 2 C2 AS
Unit 4723: Core Mathematics 3 C3 A2
Unit 4724: Core Mathematics 4 C4 A2
Unit 4725: Further Pure Mathematics 1 FP1 AS
Unit 4726: Further Pure Mathematics 2 FP2 A2
Unit 4727: Further Pure Mathematics 3 FP3 A2
Unit 4728: Mechanics 1 M1 AS
Unit 4729: Mechanics 2 M2 A2
Unit 4730: Mechanics 3 M3 A2
Unit 4731: Mechanics 4 M4 A2
Unit 4732: Probability and Statistics 1 S1 AS
Unit 4733: Probability and Statistics 2 S2 A2
Unit 4734: Probability and Statistics 3 S3 A2
Unit 4735: Probability and Statistics 4 S4
Unit 4736: Decision Mathematics 1 D1A2
Unit 4737: Decision Mathematics 2 D2 A2AS

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Write down the exact values of
(i) 4^{-2},
(ii) $(2 \sqrt{ } 2)^{2}$,
(iii) $\left(1^{3}+2^{3}+3^{3}\right)^{\frac{1}{2}}$.

2 (i) Express $x^{2}-8 x+3$ in the form $(x+a)^{2}+b$.
(ii) Hence write down the coordinates of the minimum point on the graph of $y=x^{2}-8 x+3$.

3 The quadratic equation $x^{2}+k x+k=0$ has no real roots for x.
(i) Write down the discriminant of $x^{2}+k x+k$ in terms of k.
(ii) Hence find the set of values that k can take.

4 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in each of the following cases:
(i) $y=4 x^{3}-1$,
(ii) $y=x^{2}\left(x^{2}+2\right)$,
(iii) $y=\sqrt{ } x$
(i) Solve the simultaneous equations

$$
\begin{equation*}
y=x^{2}-3 x+2, \quad y=3 x-7 \tag{5}
\end{equation*}
$$

(ii) What can you deduce from the solution to part (i) about the graphs of $y=x^{2}-3 x+2$ and $y=3 x-7$?
(iii) Hence, or otherwise, find the equation of the normal to the curve $y=x^{2}-3 x+2$ at the point $(3,2)$, giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.

6 (i) Sketch the graph of $y=\frac{1}{x}$, where $x \neq 0$, showing the parts of the graph corresponding to both positive and negative values of x.
(ii) Describe fully the geometrical transformation that transforms the curve $y=\frac{1}{x}$ to the curve $y=\frac{1}{x+2}$. Hence sketch the curve $y=\frac{1}{x+2}$.
(iii) Differentiate $\frac{1}{x}$ with respect to x.
(iv) Use parts (ii) and (iii) to find the gradient of the curve $y=\frac{1}{x+2}$ at the point where it crosses the y-axis.

7

The diagram shows a circle which passes through the points $A(2,9)$ and $B(10,3) . A B$ is a diameter of the circle.
(i) Calculate the radius of the circle and the coordinates of the centre.
(ii) Show that the equation of the circle may be written in the form $x^{2}+y^{2}-12 x-12 y+47=0$.
(iii) The tangent to the circle at the point B cuts the x-axis at C. Find the coordinates of C.

8 (i) Find the coordinates of the stationary points on the curve $y=2 x^{3}-3 x^{2}-12 x-7$.
(ii) Determine whether each stationary point is a maximum point or a minimum point.
(iii) By expanding the right-hand side, show that

$$
\begin{equation*}
2 x^{3}-3 x^{2}-12 x-7=(x+1)^{2}(2 x-7) . \tag{2}
\end{equation*}
$$

(iv) Sketch the curve $y=2 x^{3}-3 x^{2}-12 x-7$, marking the coordinates of the stationary points and the points where the curve meets the axes.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Core Mathematics 1
MARK SCHEME

Specimen Paper

1	(i) $\frac{1}{16}$	B1	1	For correct value (fraction or exact decimal)
	(ii) 8	B1	1	For correct value 8 only
	(iii) 6	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For $1^{3}+2^{3}+3^{3}=36$ seen or implied For correct value 6 only
	(i) $x^{2}-8 x+3=(x-4)^{2}-13$ i.e. $a=-4, b=-13$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	For $(x-4)^{2}$ seen, or statement $a=-4$ For use of (implied) relation $a^{2}+b=3$ For correct value of b stated or implied
	(ii) Minimum point is $(4,-13)$	$\begin{aligned} & \mathrm{B} 1 \checkmark \\ & \mathrm{~B} 1 \checkmark \end{aligned}$	2	For x-coordinate equal to their $(-a)$ For y-coordinate equal to their b
	(i) Discriminant is $k^{2}-4 k$	$\begin{array}{\|l\|} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	2	For attempted use of the discriminant For correct expression (in any form)
	(ii) For no real roots, $k^{2}-4 k<0$ Hence $k(k-4)<0$ So $0<k<4$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	4	For stating their $\Delta<0$ For factorising attempt (or other soln method) For both correct critical values 0 and 4 seen For correct pair of inequalities
	(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For clear attempt at $n x^{n-1}$ For completely correct answer
	(ii) $y=x^{4}+2 x^{2}$ Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3}+4 x$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \checkmark \end{aligned}$	3	For correct expansion For correct differentiation of at least one term For correct differentiation of their 2 terms
	(iii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2 7	For clear differentiation attempt of $x^{\frac{1}{2}}$ For correct answer, in any form
	(i) $x^{2}-3 x+2=3 x-7 \Rightarrow x^{2}-6 x+9=0$ Hence $(x-3)^{2}=0$ So $x=3$ and $y=2$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} 1 \end{aligned}$	5	For equating two expressions for y For correct 3-term quadratic in x For factorising, or other solution method For correct value of x For correct value of y
	(ii) The line $y=3 x-7$ is the tangent to the curve $y=x^{2}-3 x+2$ at the point $(3,2)$	B1		For stating tangency For identifying $x=3, y=2$ as coordinates
	(iii) Gradient of tangent is 3 Hence gradient of normal is $-\frac{1}{3}$ Equation of normal is $y-2=-\frac{1}{3}(x-3)$ i.e. $x+3 y-9=0$	B1 B1 \checkmark M1 A1		For stating correct gradient of given line For stating corresponding perpendicular grad For appropriate use of straight line equation For correct equation in required form

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 2

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Expand $(1-2 x)^{4}$ in ascending powers of x, simplifying the coefficients.

2 (i) Find $\int \frac{1}{x^{2}} \mathrm{~d} x$.
(ii) The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}}$. Find the equation of the curve, given that it passes through the point $(1,3)$.

3 (a) Express each of the following in terms of $\log _{2} x$:
(i) $\quad \log _{2}\left(x^{2}\right)$,
(ii) $\quad \log _{2}\left(8 x^{2}\right)$.
(b) Given that $y^{2}=27$, find the value of $\log _{3} y$.

4 Records are kept of the number of copies of a certain book that are sold each week. In the first week after publication 3000 copies were sold, and in the second week 2400 copies were sold. The publisher forecasts future sales by assuming that the number of copies sold each week will form a geometric progression with first two terms 3000 and 2400. Calculate the publisher's forecasts for
(i) the number of copies that will be sold in the 20th week after publication,
(ii) the total number of copies sold during the first 20 weeks after publication,
(iii) the total number of copies that will ever be sold.

5 (i) Show that the equation $15 \cos ^{2} \theta^{\circ}=13+\sin \theta^{\circ}$ may be written as a quadratic equation in $\sin \theta^{\circ}$.
(ii) Hence solve the equation, giving all values of θ such that $0 \leqslant \theta \leqslant 360$.

6

The diagram shows triangle $A B C$, in which $A B=3 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and angle $A B C=2.1$ radians. Calculate
(i) angle $A C B$, giving your answer in radians,
(ii) the area of the triangle.

An arc of a circle with centre A and radius 3 cm is drawn, cutting $A C$ at the point D.
(iii) Calculate the perimeter and the area of the sector $A B D$.

The diagram shows the curves $y=-3 x^{2}-9 x+30$ and $y=x^{2}+3 x-10$.
(i) Verify that the curves intersect at the points $A(-5,0)$ and $B(2,0)$.
(ii) Show that the area of the shaded region between the curves is given by $\int_{-5}^{2}\left(-4 x^{2}-12 x+40\right) \mathrm{d} x$.
(iii) Hence or otherwise show that the area of the shaded region between the curves is $228 \frac{2}{3}$.

The diagram shows the curve $y=1.25^{x}$.
(i) A point on the curve has y-coordinate 2. Calculate its x-coordinate.
(ii) Use the trapezium rule with 4 intervals to estimate the area of the shaded region, bounded by the curve, the axes, and the line $x=4$.
(iii) State, with a reason, whether the estimate found in part (ii) is an overestimate or an underestimate. [2]
(iv) Explain briefly how the trapezium rule could be used to find a more accurate estimate of the area of the shaded region.

9 The cubic polynomial $x^{3}+a x^{2}+b x-6$ is denoted by $\mathrm{f}(x)$.
(i) The remainder when $\mathrm{f}(x)$ is divided by $(x-2)$ is equal to the remainder when $\mathrm{f}(x)$ is divided by $(x+2)$. Show that $b=-4$.
(ii) Given also that $(x-1)$ is a factor of $\mathrm{f}(x)$, find the value of a.
(iii) With these values of a and b, express $\mathrm{f}(x)$ as a product of a linear factor and a quadratic factor.
(iv) Hence determine the number of real roots of the equation $\mathrm{f}(x)=0$, explaining your reasoning.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education
Advanced General Certificate of Education
MATHEMATICS
Core Mathematics 2
MARK SCHEME

Specimen Paper

1	$1-8 x+24 x^{2}-32 x^{3}+16 x^{4}$			For first two terms $1-8 x$ For expansion in powers of $(-2 x)$ For any correct use of binomial coefficients For any one further term correct For completely correct expansion
2	(i) $\int x^{-2} \mathrm{~d} x=-x^{-1}+c$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \end{aligned}$	3	For any attempt to integrate x^{-2} For correct expression $-x^{-1}$ (in any form) For adding an arbitrary constant
	(ii) $y=-x^{-1}+c$ passes through $(1,3)$, so $3=-1+c \Rightarrow c=4$ Hence curve is $y=-\frac{1}{x}+4$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \checkmark \\ \text { A1 } \\ \hline \end{array}$	$\begin{array}{r} \\ 3 \\ 6 \\ \hline \end{array}$	For attempt to use $(1,3)$ to evaluate c For correct value from their equation For correct equation
	(a) (i) $2 \log _{2} x$	B1	1	For correct answer
	$\text { (ii) } \begin{aligned} & \log _{2}\left(8 x^{2}\right)=\log _{2} 8+\log _{2} x^{2} \\ & \quad=3+2 \log _{2} x \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array}$	3	For relevant sum of logarithms For relevant use of $8=2^{3}$ For correct simplified answer
	(b) $2 \log _{3} y=\log _{3} 27$ Hence $\log _{3} y=\frac{3}{2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{array}{r} \mathbf{3} \\ 7 \\ \hline \end{array}$	For taking logs of both sides of the equation For any correct expression for $\log _{3} y$ For correct simplified answer
	(i) $r=\frac{2400}{3000}=0.8$ Forecast for week 20 is $3000 \times 0.8^{19} \approx 43$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	3	For the correct value of r For correct use of $a r^{n-1}$ For correct (integer) answer
	(ii) $\frac{3000\left(1-0.8^{20}\right)}{1-0.8}=14827$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$		For correct use of $\frac{a\left(1-r^{n}\right)}{1-r}$ For correct answer (3sf is acceptable)
	(iii) $\frac{3000}{1-0.8}=15000$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	$\begin{array}{r} 2 \\ 7 \\ \hline \end{array}$	For correct use of $\frac{a}{1-r}$ For correct answer
	(i) LHS is $15\left(1-\sin ^{2} \theta^{\circ}\right)$ Hence equation is $15 \sin ^{2} \theta^{\circ}+\sin \theta^{\circ}-2=0$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using the relevant trig identity For correct 3-term quadratic
	(ii) $\left(5 \sin \theta^{\circ}+2\right)\left(3 \sin \theta^{\circ}-1\right)=0$ Hence $\sin \theta^{\circ}=-\frac{2}{5}$ or $\frac{1}{3}$ So $\theta=19.5,160.5,203.6,336.4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \checkmark \\ & \text { A1 } \checkmark \end{aligned}$		For factorising, or other solution method For both correct values For any relevant inverse sine operation For any one correct value For corresponding second value For both remaining values

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Solve the inequality $|2 x+1|>|x-1|$.

2 (i) Prove the identity

$$
\begin{equation*}
\sin \left(x+30^{\circ}\right)+(\sqrt{ } 3) \cos \left(x+30^{\circ}\right) \equiv 2 \cos x \tag{4}
\end{equation*}
$$

where x is measured in degrees.
(ii) Hence express $\cos 15^{\circ}$ in surd form.

3 The sequence defined by the iterative formula

$$
x_{n+1}=\sqrt[3]{\left(17-5 x_{n}\right)}
$$

with $x_{1}=2$, converges to α.
(i) Use the iterative formula to find α correct to 2 decimal places. You should show the result of each iteration.
(ii) Find a cubic equation of the form

$$
x^{3}+c x+d=0
$$

which has α as a root.
(iii) Does this cubic equation have any other real roots? Justify your answer.

4

The diagram shows the curve

$$
y=\frac{1}{\sqrt{ }(4 x+1)}
$$

The region R (shaded in the diagram) is enclosed by the curve, the axes and the line $x=2$.
(i) Show that the exact area of R is 1 .
(ii) The region R is rotated completely about the x-axis. Find the exact volume of the solid formed.

5 At time t minutes after an oven is switched on, its temperature $\theta^{\circ} \mathrm{C}$ is given by

$$
\theta=200-180 \mathrm{e}^{-0.1 t}
$$

(i) State the value which the oven's temperature approaches after a long time.
(ii) Find the time taken for the oven's temperature to reach $150^{\circ} \mathrm{C}$.
(iii) Find the rate at which the temperature is increasing at the instant when the temperature reaches $150^{\circ} \mathrm{C}$.

6 The function f is defined by

$$
\mathrm{f}: x \mapsto 1+\sqrt{ } x \quad \text { for } x \geqslant 0
$$

(i) State the domain and range of the inverse function f^{-1}.
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(iii) By considering the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, show that the solution to the equation

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{f}^{-1}(x) \tag{4}
\end{equation*}
$$

is $x=\frac{1}{2}(3+\sqrt{ } 5)$.

7 (i) Write down the formula for $\tan 2 x$ in terms of $\tan x$.
(ii) By letting $\tan x=t$, show that the equation

$$
4 \tan 2 x+3 \cot x \sec ^{2} x=0
$$

becomes

$$
\begin{equation*}
3 t^{4}-8 t^{2}-3=0 \tag{4}
\end{equation*}
$$

(iii) Hence find all the solutions of the equation

$$
\begin{equation*}
4 \tan 2 x+3 \cot x \sec ^{2} x=0 \tag{4}
\end{equation*}
$$

which lie in the interval $0 \leqslant x \leqslant 2 \pi$.

The diagram shows the curve $y=(\ln x)^{2}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(ii) The point P on the curve is the point at which the gradient takes its maximum value. Show that the tangent at P passes through the point $(0,-1)$.

The diagram shows the curve $y=\tan ^{-1} x$ and its asymptotes $y= \pm a$.
(i) State the exact value of a.
(ii) Find the value of x for which $\tan ^{-1} x=\frac{1}{2} a$.

The equation of another curve is $y=2 \tan ^{-1}(x-1)$.
(iii) Sketch this curve on a copy of the diagram, and state the equations of its asymptotes in terms of a.
(iv) Verify by calculation that the value of x at the point of intersection of the two curves is 1.54 , correct to 2 decimal places.

Another curve (which you are not asked to sketch) has equation $y=\left(\tan ^{-1} x\right)^{2}$.
(v) Use Simpson's rule, with 4 strips, to find an approximate value for $\int_{0}^{1}\left(\tan ^{-1} x\right)^{2} \mathrm{~d} x$.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Core Mathematics 3
MARK SCHEME

Specimen Paper

1 EITHER: $4 x^{2}+4 x+1>x^{2}-2 x+1$ i.e. $3 x^{2}+6 x>0$ So $x(x+2)>0$ Hence $x<-2$ or $x>0$ OR: \quad Critical values where $2 x+1= \pm(x-1)$ i.e. where $x=-2$ and $x=0$ Hence $x<-2$ or $x>0$	M1 A1 M1 A1 A1 M1 B1 A1 M1 A1 $\mathbf{5}$ 5 	For squaring both sides For reduction to correct quadratic For factorising, or equivalent For both critical values correct For completely correct solution set For considering both cases, or from graphs For the correct value -2 For the correct value 0 For any correct method for solution set using two critical values For completely correct solution set
2 (i) $\quad \sin x\left(\frac{1}{2} \sqrt{ } 3\right)+\cos x\left(\frac{1}{2}\right)+(\sqrt{ } 3)\left(\cos x\left(\frac{1}{2} \sqrt{ } 3\right)-\sin x\left(\frac{1}{2}\right)\right)$ $=\frac{1}{2} \cos x+\frac{3}{2} \cos x=2 \cos x$, as required (ii) $\sin 45^{\circ}+(\sqrt{ } 3) \cos 45^{\circ}=2 \cos 15^{\circ}$ Hence $\cos 15^{\circ}=\frac{1+\sqrt{ } 3}{2 \sqrt{ } 2}$	M1 A1 M1 A1 $\mathbf{4}$ --------- M1 A1 $\mathbf{2}$ $\mathbf{6}$	For expanding both compound angles For completely correct expansion For using exact values of $\sin 30^{\circ}$ and $\cos 30^{\circ}$ For showing given answer correctly For letting $x=15^{\circ}$ throughout For any correct exact form
3 (i) $\begin{aligned} & x_{2}=\sqrt[3]{7}=1.9129 \ldots \\ & x_{3}=1.9517 \ldots, \quad x_{4}=1.9346 \ldots \\ & \alpha=1.94 \text { to } 2 \mathrm{dp} \end{aligned}$ (ii) $x=\sqrt[3]{(17-5 x) \Rightarrow x^{3}+5 x-17=0}$ (iii) EITHER: Graphs of $y=x^{3}$ and $y=17-5 x$ only cross once Hence there is only one real root $\text { OR: } \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3}+5 x-17\right)=3 x^{2}+5>0$ Hence there is only one real root		For $1.91 \ldots$ seen or implied For continuing the correct process For correct value reached, following x_{5} and x_{6} both 1.94 to 2 dp For letting $x_{n}=x_{n+1}=x($ or $\alpha)$ For correct equation stated For argument based on sketching a pair of graphs, or a sketch of the cubic by calculator For correct conclusion for a valid reason For consideration of the cubic's gradient For correct conclusion for a valid reason
$4 \quad$ (i) $\int_{0}^{2}(4 x+1)^{-\frac{1}{2}} \mathrm{~d} x=\left[\frac{1}{2}(4 x+1)^{\frac{1}{2}}\right]_{0}^{2}=\frac{1}{2}(3-1)=1$	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ \hline---------~ \end{array}$	For integral of the form $k(4 x+1)^{\frac{1}{2}}$ For correct indefinite integral For correct use of limits For given answer correctly shown
(ii) $\pi \int_{0}^{2} \frac{1}{4 x+1} \mathrm{~d} x=\pi\left[\frac{1}{4} \ln (4 x+1)\right]_{0}^{2}=\frac{1}{4} \pi \ln 9$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \\ & \boxed{8} \end{array}\right\|$	For integral of the form $k \ln (4 x+1)$ For correct $\frac{1}{4} \ln (4 x+1)$, with or without π Correct use of limits and π For correct (simplified) exact value

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Core Mathematics 4

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the quotient and remainder when $x^{4}+1$ is divided by $x^{2}+1$.

2 (i) Expand $(1-2 x)^{-\frac{1}{2}}$ in ascending powers of x, up to and including the term in x^{3}.
(ii) State the set of values for which the expansion in part (i) is valid.

3 Find $\int_{0}^{1} x \mathrm{e}^{-2 x} \mathrm{~d} x$, giving your answer in terms of e .

4

As shown in the diagram the points A and B have position vectors a and \mathbf{b} with respect to the origin O.
(i) Make a sketch of the diagram, and mark the points C, D and E such that $\overrightarrow{O C}=2 \mathbf{a}, \overrightarrow{O D}=2 \mathbf{a}+\mathbf{b}$ and $\overrightarrow{O E}=\frac{1}{3} \overrightarrow{O D}$.
(ii) By expressing suitable vectors in terms of \mathbf{a} and \mathbf{b}, prove that E lies on the line joining A and B.

5 (i) For the curve $2 x^{2}+x y+y^{2}=14$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(ii) Deduce that there are two points on the curve $2 x^{2}+x y+y^{2}=14$ at which the tangents are parallel to the x-axis, and find their coordinates.

The diagram shows the curve with parametric equations

$$
x=a \sin \theta, \quad y=a \theta \cos \theta
$$

where a is a positive constant and $-\pi \leqslant \theta \leqslant \pi$. The curve meets the positive y-axis at A and the positive x-axis at B.
(i) Write down the value of θ corresponding to the origin, and state the coordinates of A and B.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\theta \tan \theta$, and hence find the equation of the tangent to the curve at the origin.

7 The line L_{1} passes through the point $(3,6,1)$ and is parallel to the vector $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$. The line L_{2} passes through the point $(3,-1,4)$ and is parallel to the vector $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
(i) Write down vector equations for the lines L_{1} and L_{2}.
(ii) Prove that L_{1} and L_{2} intersect, and find the coordinates of their point of intersection.
(iii) Calculate the acute angle between the lines.
$8 \quad$ Let $I=\int \frac{1}{x(1+\sqrt{ } x)^{2}} \mathrm{~d} x$.
(i) Show that the substitution $u=\sqrt{ } x$ transforms I to $\int \frac{2}{u(1+u)^{2}} \mathrm{~d} u$.
(ii) Express $\frac{2}{u(1+u)^{2}}$ in the form $\frac{A}{u}+\frac{B}{1+u}+\frac{C}{(1+u)^{2}}$.
(ii) Hence find I.

A cylindrical container has a height of 200 cm . The container was initially full of a chemical but there is a leak from a hole in the base. When the leak is noticed, the container is half-full and the level of the chemical is dropping at a rate of 1 cm per minute. It is required to find for how many minutes the container has been leaking. To model the situation it is assumed that, when the depth of the chemical remaining is $x \mathrm{~cm}$, the rate at which the level is dropping is proportional to $\sqrt{ } x$.

Set up and solve an appropriate differential equation, and hence show that the container has been leaking for about 80 minutes.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Core Mathematics 4
MARK SCHEME

Specimen Paper

$1 \quad \frac{x^{4}+1}{x^{2}+1}=x^{2}-1+\frac{2}{x^{2}+1}$	$\left\lvert\, \begin{array}{ll} \mathrm{B} 1 & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \\ \hline \end{array}\right.$	For correct leading term x^{2} in quotient For evidence of correct division process For correct quotient $x^{2}-1$ For correct remainder 2
$\text { (i) } \begin{aligned} (1-2 x)^{-\frac{1}{2}}=1 & +\left(-\frac{1}{2}\right)(-2 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(-2 x)^{2}+ \\ & +\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(-2 x)^{3}+\ldots \\ = & 1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For 2nd, 3rd or 4th term OK (unsimplified) For $1+x$ correct For $+\frac{3}{2} x^{2}$ correct For $+\frac{5}{2} x^{3}$ correct
(ii) Valid for $\|x\|<\frac{1}{2}$	$\begin{array}{\|lr} \text { B1 } & \mathbf{1} \\ & \mathbf{5} \\ \hline \end{array}$	For any correct expression(s)
$3 \begin{aligned} \int_{0}^{1} x \mathrm{e}^{-2 x} \mathrm{~d} x & =\left[-\frac{1}{2} x \mathrm{e}^{-2 x}\right]_{0}^{1}-\int_{0}^{1}-\frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x \\ & =\left[-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}\right]_{0}^{1} \\ & =\frac{1}{4}-\frac{3}{4} \mathrm{e}^{-2} \end{aligned}$	M1 A1 M1 M1 A1 $\mathbf{5}$ $\mathbf{5}$	For attempt at 'parts' going the correct way For correct terms $-\frac{1}{2} x \mathrm{e}^{-2 x}-\int-\frac{1}{2} \mathrm{e}^{-2 x} \mathrm{~d} x$ For consistent attempt at second integration For correct use of limits throughout For correct (exact) answer in any form
4 (i)	B1 B1 B1」	For C correctly located on sketch For D correctly located on sketch For E correctly located wrt O and D
(ii) $\overrightarrow{A E}=\frac{1}{3}(2 \mathbf{a}+\mathbf{b})-\mathbf{a}=\frac{1}{3}(\mathbf{b}-\mathbf{a})$ Hence $A E$ is parallel to $A B$ i.e. E lies on the line joining A to B	$\left\lvert\, \begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \\ & \mathbf{7} \\ \hline \end{array}\right.$	For relevant subtraction involving $\overrightarrow{O E}$ For correct expression for $(\pm) \overrightarrow{A E}$ or $\overrightarrow{E B}$ For correct recognition of parallel property For complete proof of required result
5 (i) $4 x+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 x+y}{x+2 y}$	B1 B1 M1 A1 4	For correct terms $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$ For correct term $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ For solving for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ For any correct form of expression
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow y=-4 x$ Hence $2 x^{2}+\left(-4 x^{2}\right)+(-4 x)^{2}=14$ i.e. $x^{2}=1$ So the two points are $(1,-4)$ and $(-1,4)$	$\left\|\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \\ & \mathbf{8} \end{array}\right\|$	For stating or using their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ For solving simultaneously with curve equn For correct value of x^{2} (or y^{2}) For both correct points identified

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Further Pure Mathematics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Use formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^{2}$ to show that

$$
\begin{equation*}
\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2) \tag{5}
\end{equation*}
$$

2 The cubic equation $x^{3}-6 x^{2}+k x+10=0$ has roots $p-q, p$ and $p+q$, where q is positive.
(i) By considering the sum of the roots, find p.
(ii) Hence, by considering the product of the roots, find q.
(iii) Find the value of k.

3 The complex number $2+\mathrm{i}$ is denoted by z, and the complex conjugate of z is denoted by z^{*}.
(i) Express z^{2} in the form $x+\mathrm{i} y$, where x and y are real, showing clearly how you obtain your answer.
(ii) Show that $4 z-z^{2}$ simplifies to a real number, and verify that this real number is equal to $z z^{*}$.
(iii) Express $\frac{z+1}{z-1}$ in the form $x+\mathrm{i} y$, where x and y are real, showing clearly how you obtain your answer.

4 A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n}=3^{2 n}-1
$$

(i) Write down the value of u_{1}.
(ii) Show that $u_{n+1}-u_{n}=8 \times 3^{2 n}$.
(iii) Hence prove by induction that each term of the sequence is a multiple of 8 .
(i) Show that

$$
\begin{equation*}
\frac{1}{2 r-1}-\frac{1}{2 r+1}=\frac{2}{4 r^{2}-1} . \tag{2}
\end{equation*}
$$

(ii) Hence find an expression in terms of n for

$$
\begin{equation*}
\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\ldots+\frac{2}{4 n^{2}-1} \tag{4}
\end{equation*}
$$

(iii) State the value of
(a) $\sum_{r=1}^{\infty} \frac{2}{4 r^{2}-1}$,
(b) $\sum_{r=n+1}^{\infty} \frac{2}{4 r^{2}-1}$.

6 In an Argand diagram, the variable point P represents the complex number $z=x+\mathrm{i} y$, and the fixed point A represents $a=4-3 \mathrm{i}$.
(i) Sketch an Argand diagram showing the position of A, and find $|a|$ and $\arg a$.
(ii) Given that $|z-a|=|a|$, sketch the locus of P on your Argand diagram.
(iii) Hence write down the non-zero value of z corresponding to a point on the locus for which
(a) the real part of z is zero,
(b) $\arg z=\arg a$.

7 The matrix \mathbf{A} is given by $\mathbf{A}=\left(\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right)$.
(i) Draw a diagram showing the unit square and its image under the transformation represented by \mathbf{A}. [3]
(ii) The value of $\operatorname{det} \mathbf{A}$ is 5 . Show clearly how this value relates to your diagram in part (i).

A represents a sequence of two elementary geometrical transformations, one of which is a rotation R.
(iii) Determine the angle of R, and describe the other transformation fully.
(iv) State the matrix that represents R, giving the elements in an exact form.
$\mathbf{8}$ The matrix \mathbf{M} is given by $\mathbf{M}=\left(\begin{array}{rrr}a & 2 & -1 \\ 2 & 3 & -1 \\ 2 & -1 & 1\end{array}\right)$, where a is a constant.
(i) Show that the determinant of \mathbf{M} is $2 a$.
(ii) Given that $a \neq 0$, find the inverse matrix \mathbf{M}^{-1}.
(iii) Hence or otherwise solve the simultaneous equations

$$
\begin{align*}
x+2 y-z & =1, \\
2 x+3 y-z & =2, \tag{3}\\
2 x-y+z & =0 .
\end{align*}
$$

(iv) Find the value of k for which the simultaneous equations

$$
\begin{array}{r}
2 y-z=k, \\
2 x+3 y-z=2, \\
2 x-y+z=0, \tag{3}
\end{array}
$$

have solutions.
(v) Do the equations in part (iv), with the value of k found, have a solution for which $x=z$? Justify your answer.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4725
Further Pure Mathematics 1
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

5 (i) \quad LHS $=\frac{2 r+1-(2 r-1)}{(2 r-1)(2 r+1)}=\frac{2}{4 r^{2}-1}=$ RHS	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	For correct process for adding fractions For showing given result correctly
(ii) Sum is $\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\ldots+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$ This is $1-\frac{1}{2 n+1}$	M1 A1 M1 A1 4	For expressing terms as differences using (i) For at least first two and last terms correct For cancelling pairs of terms For any correct form
(iii) (a) Sum to infinity is 1	B1才	For correct value; follow their (ii) if cnvgt
(b) Required sum is $\frac{1}{2 n+1}$	$\mathrm{B} 1 \checkmark$ $\mathbf{1}$ $\mathbf{8}$	For correct difference of their (iii)(a) and (ii)
6 (i) (See diagram in part (ii) below) $\begin{aligned} & \|a\|=\sqrt{ }\left(3^{2}+4^{2}\right)=5 \\ & \arg a=-\tan ^{-1}\left(\frac{3}{4}\right)=-0.644 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For point A correctly located For correct value for the modulus For any correct relevant trig statement For correct answer (radians or degrees)
(ii)	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	For any indication that locus is a circle For any indication that the centre is at A For a completely correct diagram
(iii) (a) $z=-6 \mathrm{i}$	B1 $\quad 1$	For correct answer
(b) $z=8-6 \mathrm{i}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array} \quad \mathbf{2}, ~ \mathbf{1 0} \mid$	For identification of end of diameter thru A For correct answer
7 (i) $\quad\left(\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right)\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)=\left(\begin{array}{rrrr}0 & 1 & -2 & -1 \\ 0 & 2 & 1 & 3\end{array}\right)$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right\|$	For at least one correct image For all vertices correct For correct diagram
(ii) The area scale-factor is 5 The transformed square has side of length $\sqrt{ } 5$ So its area is 5 times that of the unit square	$\left\|\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right\|$	For identifying det as area scale factor For calculation method relating to large sq. For a complete explanataion
(iii) Angle is $\tan ^{-1}(2)=63.4^{\circ}$ Enlargement with scale factor $\sqrt{ } 5$	$\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 & \\ \mathrm{~B} 1 & \mathbf{3} \end{array}$	For $\tan ^{-1}(2)$, or equivalent For stating 'enlargement' For correct (exact) scale factor
(iv) $\left(\begin{array}{cc}\frac{1}{\sqrt{ } 5} & -\frac{2}{\sqrt{ } 5} \\ \frac{2}{\sqrt{ } 5} & \frac{1}{\sqrt{ } 5}\end{array}\right)$	$\begin{array}{\|rr} \text { M1 } & \\ & \\ \text { A1 } & \mathbf{2} \\ & \mathbf{1 1} \end{array}$	For correct $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ pattern For correct matrix in exact form

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Further Pure Mathematics 2

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 (i) Starting from the definition of $\cosh x$ in terms of e^{x}, show that $\cosh 2 x=2 \cosh ^{2} x-1$.
(ii) Given that $\cosh 2 x=k$, where $k>1$, express each of $\cosh x$ and $\sinh x$ in terms of k.

2

The diagram shows the graph of

$$
y=\frac{2 x^{2}+3 x+3}{x+1}
$$

(i) Find the equations of the asymptotes of the curve.
(ii) Prove that the values of y between which there are no points on the curve are -5 and 3 .

3 (i) Find the first three terms of the Maclaurin series for $\ln (2+x)$.
(ii) Write down the first three terms of the series for $\ln (2-x)$, and hence show that, if x is small, then

$$
\begin{equation*}
\ln \left(\frac{2+x}{2-x}\right) \approx x \tag{3}
\end{equation*}
$$

4 The equation of a curve, in polar coordinates, is

$$
r=2 \cos 2 \theta \quad(-\pi<\theta \leqslant \pi) .
$$

(i) Find the values of θ which give the directions of the tangents at the pole.

One loop of the curve is shown in the diagram.

(ii) Find the exact value of the area of the region enclosed by the loop.

5

The diagram shows the curve $y=\frac{1}{x+1}$ together with four rectangles of unit width.
(i) Explain how the diagram shows that

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}<\int_{0}^{4} \frac{1}{x+1} \mathrm{~d} x \tag{2}
\end{equation*}
$$

The curve $y=\frac{1}{x+2}$ passes through the top left-hand corner of each of the four rectangles shown.
(ii) By considering the rectangles in relation to this curve, write down a second inequality involving $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}$ and a definite integral.
(iii) By considering a suitable range of integration and corresponding rectangles, show that

$$
\begin{equation*}
\ln (500.5)<\sum_{r=2}^{1000} \frac{1}{r}<\ln (1000) \tag{4}
\end{equation*}
$$

6 (i) Given that $I_{n}=\int_{0}^{1} x^{n} \sqrt{ }(1-x) \mathrm{d} x$, prove that, for $n \geqslant 1$,

$$
\begin{equation*}
(2 n+3) I_{n}=2 n I_{n-1} \tag{6}
\end{equation*}
$$

(ii) Hence find the exact value of I_{2}.

7 The curve with equation

$$
y=\frac{x}{\cosh x}
$$

has one stationary point for $x>0$.
(i) Show that the x-coordinate of this stationary point satisfies the equation $x \tanh x-1=0$.

The positive root of the equation $x \tanh x-1=0$ is denoted by α.
(ii) Draw a sketch showing (for positive values of x) the graph of $y=\tanh x$ and its asymptote, and the graph of $y=\frac{1}{x}$. Explain how you can deduce from your sketch that $\alpha>1$.
(iii) Use the Newton-Raphson method, taking first approximation $x_{1}=1$, to find further approximations x_{2} and x_{3} for α.
(iv) By considering the approximate errors in x_{1} and x_{2}, estimate the error in x_{3}.

8 (i) Use the substitution $t=\tan \frac{1}{2} x$ to show that

$$
\begin{equation*}
\int_{0}^{\frac{1}{2} \pi} \sqrt{\frac{1-\cos x}{1+\sin x}} \mathrm{~d} x=2 \sqrt{ } 2 \int_{0}^{1} \frac{t}{(1+t)\left(1+t^{2}\right)} \mathrm{d} t \tag{4}
\end{equation*}
$$

(ii) Express $\frac{t}{(1+t)\left(1+t^{2}\right)}$ in partial fractions.
(iii) Hence find $\int_{0}^{\frac{1}{2} \pi} \sqrt{\frac{1-\cos x}{1+\sin x}} \mathrm{~d} x$, expressing your answer in an exact form.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4726
Further Pure Mathematics 2
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

7 (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cosh x-x \sinh x}{\cosh ^{2} x}$ Max occurs when $\cosh x=x \sinh x$, i.e. $x \tanh x=1$	$\begin{array}{\|ll} \mathrm{M} 1 & \\ \mathrm{~A} 1 & \mathbf{2} \end{array}$	For differentiating and equating to zero For showing given result correctly
(ii)	$\left\lvert\, \begin{array}{ll} \mathrm{B} 1 & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}\right.$	For correct sketch of $y=\tanh x$ For identification of asymptote $y=1$ For correct explanation of $\alpha>1$ based on intersection $(1,1)$ of $y=1 / x$ with $y=1$
$\begin{aligned} & \text { (iii) } x_{n+1}=x_{n}-\frac{x_{n} \tanh x_{n}-1}{\tanh x_{n}+x_{n} \operatorname{sech}^{2} x_{n}} \\ & x_{1}=1 \Rightarrow x_{2}=1.20177 \ldots \\ & x_{3}=1.1996785 \ldots \end{aligned}$	M1 A1 M1 A1 A1 $\mathbf{5}$ $-----------~$	For correct Newton-Raphson structure For all details in $x-\frac{\mathrm{f}(x)}{\mathrm{f}^{\prime}(x)}$ correct For using Newton-Raphson at least once For x_{2} correct to at least 3 sf For x_{3} correct to at least 4sf
$\text { (iv) } \begin{aligned} & e_{1} \approx 0.2, e_{2} \approx-0.002 \\ & \frac{e_{3}}{e_{2}^{2}} \approx \frac{e_{2}}{e_{1}^{2}} \Rightarrow e_{3} \approx-2 \times 10^{-7} \end{aligned}$	$\left[\begin{array}{ll} \text { B1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right.$	For both magnitudes correct For use of quadratic convergence property For answer of correct magnitude
	13	
8 (i) $\begin{aligned} & \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{2}\left(1+t^{2}\right) \\ & \int_{0}^{\frac{1}{2} \pi} \sqrt{\frac{1-\cos }{1+\sin x}} \mathrm{~d} x=\int_{0}^{1} \sqrt{\frac{1-\frac{1-t^{2}}{1+t^{2}}}{1+\frac{2 t}{1+t^{2}}}} \cdot \frac{2}{1+t^{2}} \mathrm{~d} t \\ & =\int_{0}^{1} \sqrt{\frac{2 t^{2}}{(1+t)^{2}}} \cdot \frac{2}{1+t^{2}} \mathrm{~d} t=2 \sqrt{ } 2 \int_{0}^{1} \frac{t}{(1+t)\left(1+t^{2}\right)} \mathrm{d} \end{aligned}$ (ii) $\frac{t}{(1+t)\left(1+t^{2}\right)}=\frac{A}{1+t}+\frac{B t+C}{1+t^{2}}$ Hence $t \equiv A\left(1+t^{2}\right)+(B t+C)(1+t)$ From which $A=-\frac{1}{2}, B=\frac{1}{2}, C=\frac{1}{2}$		For this relation, stated or used For complete substitution for x in integrand For justification of limits 0 and 1 for t For correct simplification to given answer
	B1 M1 B1 A1 A1 $\mathbf{5}$ ---------1	For statement of correct form of pfs For any use of the identity involving B or C For correct value of A For correct value of B For correct value of C
(iii) Int is $\begin{aligned} & 2 \sqrt{ } 2\left[-\frac{1}{2} \ln (1+t)+\frac{1}{4} \ln \left(1+t^{2}\right)+\frac{1}{2} \tan ^{-1} t\right]_{0}^{1} \\ & =\frac{1}{4}(\pi-2 \ln 2) \sqrt{ } 2 \end{aligned}$	$\left\|\begin{array}{ll} \mathrm{B} 1 \checkmark & \\ \text { B1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \end{array}\right\|$	For both logarithm terms correct For the inverse tan term correct For use of appropriate limits For correct (exact) answer in any form

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Further Pure Mathematics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=x \tag{5}
\end{equation*}
$$

giving y in terms of x in your answer.

2 The set $S=\{a, b, c, d\}$ under the binary operation $*$ forms a group G of order 4 with the following operation table.

$*$	a	b	c	d
a	d	a	b	c
b	a	b	c	d
c	b	c	d	a
d	c	d	a	b

(i) Find the order of each element of G.
(ii) Write down a proper subgroup of G.
(iii) Is the group G cyclic? Give a reason for your answer.
(iv) State suitable values for each of a, b, c and d in the case where the operation $*$ is multiplication of complex numbers.

3 The planes Π_{1} and Π_{2} have equations $\mathbf{r} \cdot(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})=1$ and $\mathbf{r} \cdot(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})=3$ respectively. Find
(i) the acute angle between Π_{1} and Π_{2}, correct to the nearest degree,
(ii) the equation of the line of intersection of Π_{1} and Π_{2}, in the form $\mathbf{r}=\mathbf{a}+t \mathbf{b}$.

4 In this question, give your answers exactly in polar form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(i) Express $4((\sqrt{ } 3)-i)$ in polar form.
(ii) Find the cube roots of $4((\sqrt{ } 3)-i)$ in polar form.
(iii) Sketch an Argand diagram showing the positions of the cube roots found in part (ii). Hence, or otherwise, prove that the sum of these cube roots is zero.

5 The lines l_{1} and l_{2} have equations

$$
\frac{x-5}{1}=\frac{y-1}{-1}=\frac{z-5}{-2} \quad \text { and } \quad \frac{x-1}{-4}=\frac{y-11}{-14}=\frac{z-2}{2} .
$$

(i) Find the exact value of the shortest distance between l_{1} and l_{2}.
(ii) Find an equation for the plane containing l_{1} and parallel to l_{2} in the form $a x+b y+c z=d$.

6 The set S consists of all non-singular 2×2 real matrices \mathbf{A} such that $\mathbf{A Q}=\mathbf{Q A}$, where

$$
\mathbf{Q}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

(i) Prove that each matrix \mathbf{A} must be of the form $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$.
(ii) State clearly the restriction on the value of a such that $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ is in S.
(iii) Prove that S is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.)

7 (i) Prove that if $z=\mathrm{e}^{\mathrm{i} \theta}$, then $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$.
(ii) Express $\cos ^{6} \theta$ in terms of cosines of multiples of θ, and hence find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{3} \pi} \cos ^{6} \theta \mathrm{~d} \theta \tag{8}
\end{equation*}
$$

8 (i) Find the value of the constant k such that $y=k x^{2} \mathrm{e}^{-2 x}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=2 \mathrm{e}^{-2 x} . \tag{4}
\end{equation*}
$$

(ii) Find the solution of this differential equation for which $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.
(iii) Use the differential equation to determine the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0$. Hence prove that $0<y \leqslant 1$ for $x \geqslant 0$.

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4727
Further Pure Mathematics 3
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

1 Integrating factor is $\mathrm{e}^{\int-x^{-1} \mathrm{~d} x}=\mathrm{e}^{-\ln x}=\frac{1}{x}$ $\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right)=1 \Rightarrow \frac{y}{x}=\int 1 \mathrm{~d} x \Rightarrow y=x^{2}+c x$	M1 A1 M1 B1 A1 $\mathbf{5}$ $\mathbf{5}$ 	For finding integrating factor For correct simplified form For using integrating factor correctly For arbitrary constant introduced correctly For correct answer in required form
2 (i) b is the identity and so has order 1 $d * d=b$, so d has order 2 $a * a=c * c=d$, so a and c each have order 4	$\left\|\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}\right\|$	For identifying b as the identity element For stating the order of d is 2 For both orders stated
(ii) $\{b, d\}$	B1 $\quad 1$	For stating this subgroup
(iii) G is cyclic because it has an element of order 4	B1------------------1	For correct answer with justification
(iv) $b=1, d=-1, a=\mathrm{i}, c=-\mathrm{i}$ (or vice versa for a, c)	$\begin{array}{\|ll} \hline \text { B1 } & \mathbf{1} \\ & \boxed{6} \\ \hline \end{array}$	For all four correct values
3 (i) Normals are $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ Acute angle is $\cos ^{-1}\left(\frac{\|2-4-2\|}{3 \times 3}\right) \approx 64^{\circ}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{4} \end{array}$	For identifying both normal vectors For using the scalar product of the normals For completely correct process for the angle For correct answer
(ii) Direction of line is $(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) \times(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k})$, i.e. $-2 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k}$ $x-2 y+2 z=1,2 x+2 y-z=3 \Rightarrow 3 x+z=4,$ so a common point is $(1,1,1)$, for example Hence line is $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+t(-2 \mathbf{i}+5 \mathbf{j}+6 \mathbf{k})$	M1 A1 M1 A1 $\mathbf{4}$ $\mathbf{8}$	For using vector product of normals For correct vector for \mathbf{b} For complete method to find a suitable a For correct equation of line (Other methods are possible)
$4 \quad$ (i) $4((\sqrt{ } 3)-\mathrm{i})=8 \mathrm{e}^{-\frac{1}{6} \pi \mathrm{i}}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & \mathbf{2} \end{array}$	For $r=8$ For $\theta=-\frac{1}{6} \pi$
(ii) One cube root is $2 \mathrm{e}^{-\frac{1}{18} \pi \mathrm{i}}$ Others are found be multiplying by $\mathrm{e}^{ \pm \frac{2}{3} \pi \mathrm{i}}$ Giving $2 \mathrm{e}^{\frac{11}{18} \pi \mathrm{i}}$ and $2 \mathrm{e}^{-\frac{13}{18} \pi \mathrm{i}}$	$\begin{aligned} & \mathrm{B} 1 \checkmark \\ & \mathrm{M} 1 \end{aligned}$ A1 A1 4	For modulus and argument both correct For multiplication by either cube root of 1 (or equivalent use of symmetry) For either one of these roots For both correct
(iii) The roots have equal modulus and args differing by $\frac{2}{3} \pi$, so adding them geometrically makes a closed equilateral triangle; i.e. sum is zero	$\left[\begin{array}{lr} \mathrm{B} 1 \checkmark & \\ & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ & \mathbf{9} \end{array}\right.$	For correct diagram from their (ii) For geometrical interpretation of addition For a correct proof (or via components, etc)

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

An engine pulls a truck of mass 6000 kg along a straight horizontal track, exerting a constant horizontal force of magnitude E newtons on the truck (see diagram). The resistance to motion of the truck has magnitude 400 N , and the acceleration of the truck is $0.2 \mathrm{~m} \mathrm{~s}^{-2}$. Find the value of E.

Fig. 1

Fig. 2

Forces of magnitudes 8 N and 5 N act on a particle. The angle between the directions of the two forces is 30°, as shown in Fig. 1. The resultant of the two forces has magnitude $R \mathrm{~N}$ and acts at an angle θ° to the force of magnitude 8 N , as shown in Fig. 2. Find R and θ.

3 A particle is projected vertically upwards, from the ground, with a speed of $28 \mathrm{~m} \mathrm{~s}^{-1}$. Ignoring air resistance, find
(i) the maximum height reached by the particle,
(ii) the speed of the particle when it is 30 m above the ground,
(iii) the time taken for the particle to fall from its highest point to a height of 30 m ,
(iv) the length of time for which the particle is more than 30 m above the ground.

Fig. 1
A woman runs from A to B, then from B to A and then from A to B again, on a straight track, taking 90 s . The woman runs at a constant speed throughout. Fig. 1 shows the (t, v) graph for the woman.
(i) Find the total distance run by the woman.
(ii) Find the distance of the woman from A when $t=50$ and when $t=80$,

Fig. 2
At time $t=0$, a child also starts to move, from A, along $A B$. The child walks at a constant speed for the first 50 s and then at an increasing speed for the next 40 s . Fig. 2 shows the (t, v) graph for the child; it consists of two straight line segments.
(iii) At time $t=50$, the woman and the child pass each other, moving in opposite directions. Find the speed of the child during the first 50 s .
(iv) At time $t=80$, the woman overtakes the child. Find the speed of the child at this instant.

5 A particle P moves in a straight line so that, at time t seconds after leaving a fixed point O, its acceleration is $-\frac{1}{10} t \mathrm{~m} \mathrm{~s}^{-2}$. At time $t=0$, the velocity of P is $V \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Find, by integration, an expression in terms of t and V for the velocity of P.
(ii) Find the value of V, given that P is instantaneously at rest when $t=10$.
(iii) Find the displacement of P from O when $t=10$.
(iv) Find the speed with which the particle returns to O.

6

Three uniform spheres A, B and C have masses $0.3 \mathrm{~kg}, 0.4 \mathrm{~kg}$ and $m \mathrm{~kg}$ respectively. The spheres lie in a smooth horizontal groove with B between A and C. Sphere B is at rest and spheres A and C are each moving with speed $3.2 \mathrm{~m} \mathrm{~s}^{-1}$ towards B (see diagram). Air resistance may be ignored.
(i) A collides with B. After this collision A continues to move in the same direction as before, but with speed $0.8 \mathrm{~m} \mathrm{~s}^{-1}$. Find the speed with which B starts to move.
(ii) B and C then collide, after which they both move towards A, with speeds of $3.1 \mathrm{~m} \mathrm{~s}^{-1}$ and $0.4 \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Find the value of m.
(iii) The next collision is between A and B. Explain briefly how you can tell that, after this collision, A and B cannot both be moving towards C.
(iv) When the spheres have finished colliding, which direction is A moving in? What can you say about its speed? Justify your answers.

7 A sledge of mass 25 kg is on a plane inclined at 30° to the horizontal. The coefficient of friction between the sledge and the plane is 0.2 .
(i)

Fig. 1
The sledge is pulled up the plane, with constant acceleration, by means of a light cable which is parallel to a line of greatest slope (see Fig. 1). The sledge starts from rest and acquires a speed of $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ after being pulled for 10 s . Ignoring air resistance, find the tension in the cable.
(ii)

Fig. 2
On a subsequent occasion the cable is not in use and two people of total mass 150 kg are seated in the sledge. The sledge is held at rest by a horizontal force of magnitude P newtons, as shown in Fig. 2. Find the least value of P which will prevent the sledge from sliding down the plane.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4728
Mechanics 1
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 2

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

A barge B is pulled along a canal by a horse H, which is on the tow-path. The barge and the horse move in parallel straight lines and the tow-rope makes a constant angle of 15° with the direction of motion (see diagram). The tow-rope remains taut and horizontal, and has a constant tension of 500 N .
(i) Find the work done on the barge by the tow-rope, as the barge travels a distance of 400 m .

The barge moves at a constant speed and takes 10 minutes to travel the 400 m .
(ii) Find the power applied to the barge.

2 A uniform circular cylinder, of radius 6 cm and height 15 cm , is in equilibrium on a fixed inclined plane with one of its ends in contact with the plane.
(i) Given that the cylinder is on the point of toppling, find the angle the plane makes with the horizontal.

The cylinder is now placed on a horizontal board with one of its ends in contact with the board. The board is then tilted so that the angle it makes with the horizontal gradually increases.
(ii) Given that the coefficient of friction between the cylinder and the board is $\frac{3}{4}$, determine whether or not the cylinder will slide before it topples, justifying your answer.

A uniform lamina $A B C D$ has the shape of a square of side a adjoining a right-angled isosceles triangle whose equal sides are also of length a. The weight of the lamina is W. The lamina rests, in a vertical plane, on smooth supports at A and D, with $A D$ horizontal (see diagram).
(i) Show that the centre of mass of the lamina is at a horizontal distance of $\frac{11}{9} a$ from A.
(ii) Find, in terms of W, the magnitudes of the forces on the supports at A and D.

A rigid body $A B C$ consists of two uniform rods $A B$ and $B C$, rigidly joined at B. The lengths of $A B$ and $B C$ are 13 cm and 20 cm respectively, and their weights are 13 N and 20 N respectively. The distance of B from $A C$ is 12 cm . The body hangs in equilibrium, with $A C$ horizontal, from two vertical strings attached at A and C. Find the tension in each string.

5 A cyclist and his machine have a combined mass of 80 kg . The cyclist ascends a straight hill $A B$ of constant slope, starting from rest at A and reaching a speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$ at B. The level of B is 4 m above the level of A.
(i) Find the gain in kinetic energy and the gain in gravitational potential energy of the cyclist and his machine.

During the ascent the resistance to motion is constant and has magnitude 70 N .
(ii) Given that the work done by the cyclist in ascending the hill is 8000 J , find the distance $A B$.

At B the cyclist is working at 720 watts and starts to move in a straight line along horizontal ground. The resistance to motion has the same magnitude of 70 N as before.
(iii) Find the acceleration with which the cyclist starts to move horizontally.

6 An athlete 'puts the shot' with an initial speed of $19 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 11° above the horizontal. At the instant of release the shot is 1.53 m above the horizontal ground. By treating the shot as a particle and ignoring air resistance, find
(i) the maximum height, above the ground, reached by the shot,
(ii) the horizontal distance the shot has travelled when it hits the ground.

A ball of mass 0.08 kg is attached by two strings to a fixed vertical post. The strings have lengths 2.5 m and 2.4 m , as shown in the diagram. The ball moves in a horizontal circle, of radius 2.4 m , with constant speed $v \mathrm{~m} \mathrm{~s}^{-1}$. Each string is taut and the lower string is horizontal. The modelling assumptions made are that both strings are light and inextensible, and that there is no air resistance.
(i) Find the tension in each string when $v=10.5$.
(ii) Find the least value of v for which the lower string is taut.

8 Two uniform smooth spheres, A and B, have the same radius. The mass of A is 0.24 kg and the mass of B is $m \mathrm{~kg}$. Sphere A is travelling in a straight line on a horizontal table, with speed $8 \mathrm{~m} \mathrm{~s}^{-1}$, when it collides directly with sphere B, which is at rest. As a result of the collision, sphere A continues in the same direction with a speed of $6 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Find the magnitude of the impulse exerted by A on B.
(ii) Show that $m \leqslant 0.08$.

It is given that $m=0.06$.
(iii) Find the coefficient of restitution between A and B.

On another occasion A and B are travelling towards each other, each with speed $4 \mathrm{~m} \mathrm{~s}^{-1}$, when they collide directly.
(iv) Find the speeds of A and B immediately after the collision.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4729
Mechanics 2
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

1 (i) Work done is $500 \cos 15^{\circ} \times 400 \approx 193000 \mathrm{~J}$	$\left\lvert\, \begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right.$	For attempt to use Force \times distance For correct unsimplified product For correct answer 193000
(ii) Power applied is $\frac{193185}{600} \approx 322 \mathrm{~W}$	$\begin{array}{\|lr} \text { M1 } & \\ \text { A1 } & \mathbf{2} \\ & \boxed{5} \\ \hline \end{array}$	For relevant use of $\frac{\text { work }}{\text { time }}$ or force \times velocity For correct answer 322
2 (i) CM is vertically above lowest point of base Hence $\tan \alpha=\frac{6}{7.5} \Rightarrow \alpha=38.7^{\circ}$	$\begin{array}{ll} \mathrm{B} 1 & \\ \text { M1 } \\ \text { A1 } & \mathbf{3} \end{array}$	For stating or implying correct geometry For appropriate trig calculation For correct answer 38.7
(ii) Cylinder slides when $\tan \theta=\frac{3}{4}$ But $\frac{3}{4}<0.8$, so $\theta<\alpha$ Hence it slides first (at inclination 36.9°)	$\begin{array}{lr} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \\ & \boxed{7} \\ \hline \end{array}$	For stating or implying limiting friction case For comparing $\tan \alpha$ to $\tan \theta$, or equivalent For correct comparison of the angles For correct conclusion of sliding first
3 (i) CG of triangle is $\frac{2}{3} a$ horizontally from A Moments: $\frac{1}{3} W \times \frac{2}{3} a+\frac{2}{3} W \times \frac{3}{2} a=W \times \bar{x}$ Hence $\bar{x}=\frac{11}{9} a$	$\left\|\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \end{array}\right\|$	For equating moments about A, or equivalent For a correct unsimplified equation Given answer correctly shown
(ii) $R_{A} \times 2 a=W \times \frac{7}{9} a \Rightarrow R_{A}=\frac{7}{18} W$ $R_{A}+R_{D}=W \Rightarrow R_{D}=\frac{11}{18} W$	M1 A1 M1 A1 \checkmark $\mathbf{4}$ 8	For one moments equation For one correct answer For resolving, or a second moments equation For a second correct answer
$4 \quad$ Horiz distances of B from A and C are 5 cm and 16 cm $21 T_{A}=13 \times 18.5+20 \times 8$ $T_{A}+T_{C}=33$ Hence $T_{A}=19.1 \mathrm{~N}$ and $T_{C}=13.9 \mathrm{~N}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } \checkmark & \\ \text { A1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{8} \\ & \mathbf{8} \\ \hline \end{array}$	For appropriate use of Pythagoras For both distances correct For any moments equation for the system For any one relevant term correct For a completely correct equation For resolving, or using another moments eqn For correct answer 19.1 For correct answer 13.9
5 (i) Gain in KE is $\frac{1}{2} \times 80 \times 5^{2}=1000 \mathrm{~J}$ Gain in PE is $80 \times 9.8 \times 4=3136 \mathrm{~J}$	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right\|$	For use of formula $\frac{1}{2} m v^{2}$ For use of formula mgh For both answers 1000 and 3136 correct
(ii) $8000=1000+3136+70 d$ Hence distance $A B$ is 55.2 m	$\left\|\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}\right\|$	For equating work done to energy change For relevant use of force \times distance For correct answer 55.2
(iii) $\frac{720}{5}-70=80 a$ Hence acceleration is $0.925 \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{array}{lr} \mathrm{B} 1 & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{4} \\ & \mathbf{1 0} \\ \hline \end{array}$	For driving force $\frac{720}{5}$ For use of Newton II with 3-term equation For a completely correct equation For correct answer 0.925

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A particle is moving with simple harmonic motion in a straight line. The period is 0.2 s and the amplitude of the motion is 0.3 m . Find the maximum speed and the maximum acceleration of the particle.

2

A sphere A of mass m, moving on a horizontal surface, collides with another sphere B of mass $2 m$, which is at rest on the surface. The spheres are smooth and uniform, and have equal radius. Immediately before the collision, A has velocity u at an angle θ° to the line of centres of the spheres (see diagram). Immediately after the collision, the spheres move in directions that are perpendicular to each other.
(i) Find the coefficient of restitution between the spheres.
(ii) Given that the spheres have equal speeds after the collision, find θ.

3 An aircraft of mass 80000 kg travelling at $90 \mathrm{~m} \mathrm{~s}^{-1}$ touches down on a straight horizontal runway. It is brought to rest by braking and resistive forces which together are modelled by a horizontal force of magnitude $\left(27000+50 v^{2}\right)$ newtons, where $v \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of the aircraft. Find the distance travelled by the aircraft between touching down and coming to rest.

4 For a bungee jump, a girl is joined to a fixed point O of a bridge by an elastic rope of natural length 25 m and modulus of elasticity 1320 N . The girl starts from rest at O and falls vertically. The lowest point reached by the girl is 60 m vertically below O. The girl is modelled as a particle, the rope is assumed to be light, and air resistance is neglected.
(i) Find the greatest tension in the rope during the girl's jump.
(ii) Use energy considerations to find
(a) the mass of the girl,
(b) the speed of the girl when she has fallen half way to the lowest point.

A particle P of mass 0.3 kg is moving in a vertical circle. It is attached to the fixed point O at the centre of the circle by a light inextensible string of length 1.5 m . When the string makes an angle of 40° with the downward vertical, the speed of P is $6.5 \mathrm{~m} \mathrm{~s}^{-1}$ (see diagram). Air resistance may be neglected.
(i) Find the radial and transverse components of the acceleration of P at this instant.

In the subsequent motion, with the string still taut and making an angle θ° with the downward vertical, the speed of P is $v \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Use conservation of energy to show that $v^{2} \approx 19.7+29.4 \cos \theta^{\circ}$.
(iii) Find the tension in the string in terms of θ.
(iv) Find the value of v at the instant when the string becomes slack.

A step-ladder is modelled as two uniform rods $A B$ and $A C$, freely jointed at A. The rods are in equilibrium in a vertical plane with B and C in contact with a rough horizontal surface. The rods have equal lengths; $A B$ has weight 150 N and $A C$ has weight 270 N . The point A is 2.5 m vertically above the surface, and $B C=1.6 \mathrm{~m}$ (see diagram).
(i) Find the horizontal and vertical components of the force acting on $A C$ at A.
(ii) The coefficient of friction has the same value μ at B and at C, and the step-ladder is on the point of slipping. Giving a reason, state whether the equilibrium is limiting at B or at C, and find μ.

Two points A and B lie on a vertical line with A at a distance 2.6 m above B. A particle P of mass 10 kg is joined to A by an elastic string and to B by another elastic string (see diagram). Each string has natural length 0.8 m and modulus of elasticity 196 N . The strings are light and air resistance may be neglected.
(i) Verify that P is in equilibrium when P is vertically below A and the length of the string $P A$ is 1.5 m .

The particle is set in motion along the line $A B$ with both strings remaining taut. The displacement of P below the equilibrium position is denoted by x metres.
(ii) Show that the tension in the string $P A$ is $245(0.7+x)$ newtons, and the tension in the string $P B$ is $245(0.3-x)$ newtons.
(iii) Show that the motion of P is simple harmonic.
(iv) Given that the amplitude of the motion is 0.25 m , find the proportion of time for which P is above the mid-point of $A B$.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4730
Mechanics 3
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

$1 \quad 0.2=\frac{2 \pi}{\omega} \Rightarrow \omega=10 \pi$ Hence maximum speed is $0.3 \times 10 \pi=3 \pi \approx 9.42 \mathrm{~m} \mathrm{~s}^{-1}$ Maximum acc is $0.3 \times(10 \pi)^{2}=30 \pi^{2} \approx 296 \mathrm{~m} \mathrm{~s}^{-2}$	M1 A1 M1 A1 \checkmark M1 A1 \checkmark $\mathbf{6}$ $\mathbf{6}$	For relevant use of $\frac{2 \pi}{\omega}$ For correct value 10π For relevant use of $v=a \omega$ For correct value 3π or 9.42 For relevant use of $a \omega^{2}$ For correct value 30π or 296	
3 (i) A and B move off \perp and $\\|$ resp. to line of centres $\begin{aligned} & 2 m v_{B}=m u \cos \theta \\ & v_{B}=e u \cos \theta \end{aligned}$ Hence $e=0.5$ (ii) $v_{A}=u \sin \theta$ Hence $v_{A}=v_{B} \Rightarrow u \sin \theta=0.5 u \cos \theta$ So $\theta=\tan ^{-1} 0.5 \approx 26.6^{\circ}$	M1 A1 A1 ----------1 B1 M1 A1 $\mathbf{3}$	For correct directions of motion after impact For correct momentum equation For correct restitution equation For correct answer 0.5 For correct equation For forming the relevant equation for θ For correct value 26.6	
$380000 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\left(27000+50 v^{2}\right)$ Hence $x=-\int \frac{1600 v}{540+v^{2}} \mathrm{~d} v$ $=-800 \ln \left(540+v^{2}\right)+k$ $v=90 \text { when } x=0 \Rightarrow k=800 \ln 8640$ Hence when $v=0, x=800 \ln 16$ So distance is 2220 m approximately	M1 A1 M1 M1 A1 \checkmark M1 M1 A1 8 8 8	For using Newton II to form a DE For correct equation including $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ For separation of variables For logarithmic form of integral For correct integration of (their) $\frac{a v}{b+c v^{2}}$ For use of initial condition to find k For evaluation of required distance (The previous two M marks can equivalently be earned by using definite integration) For correct value 2220	
4 (i) Greatest tension $=\frac{1320 \times 35}{25}=1848 \mathrm{~N}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \mathbf{2} \end{array}$	For use of $\frac{\lambda x}{l}$ at lowest point For correct answer 1848	
(ii) (a) $m g \times 60=\frac{1320}{2 \times 25}(60-25)^{2}$ Hence the girl's mass is 55 kg	M1 A1 M1 A1	For use of correct EPE formula $\frac{\lambda x^{2}}{2 l}$ For correct unsimplified expression for EPE For use of equation involving EPE and GPE For correct answer 55	
(b) $55 g \times 30=\frac{1}{2} \times 55 v^{2}+\frac{1320}{2 \times 25} \times(30-25)^{2}$ So $v^{2}=564$, hence speed is $23.7 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{array}{lr} \text { M1 } & \\ \text { A1 } \checkmark & \\ \text { A1 } & \mathbf{3} \\ & \mathbf{9} \end{array}$	For energy equation with KE, GPE and EPE For equation with all terms correct For correct answer 24.3	

(i) $T_{A P}=\frac{196}{0.8} \times(1.5-0.8)=171.5$
$T_{B P}=\frac{196}{0.8} \times(2.6-1.5-0.8)=73.5$
$T_{A P}-T_{B P}=98=10 \mathrm{~g}$, hence equilibrium
$T_{B P}=\frac{196}{0.8} \times(2.6-1.5-0.8)=73.5$
$T_{A P}-T_{B P}=98=10 \mathrm{~g}$, hence equilibrium
(--1.
(ii) Extension of $P A$ is $1.5+x-0.8=0.7+x$
Hence $T_{A P}=\frac{196}{0.8}(0.7+x)=245(0.7+x)$
196

(iii) $245(0.3-x)+10 g-245(07 .+x)=10 \ddot{x}$

Hence $\ddot{x}=-49 x$, so the motion is SHM
(iv) $0.2=0.25 \cos (7 t)$

Hence half of time above mid-pt is $t=0.0919 \ldots$
Proportion is $\frac{t}{\pi / \omega}=0.205$
(ii) Extension of $P A$ is $1.5+x-0.8=0.7+x$

Hence $T_{A P}=\frac{196}{0.8}(0.7+x)=245(0.7+x)$

For using Hook's law to find either tension

For both tensions correct
For considering $T_{A P}=m g+T_{B P}$, or equiv
For showing given result correctly
For finding either extension in terms of x
For showing one given answer correctly
For showing the other given answer correctly
For use of Newton II, at a general position
For a correct equation
For showing the given result correctly
For use of ± 0.2 in SHM equation involving t
For a correct equation for a relevant time
For correct value for a relevant time
For relating t to period of oscillation
For correct proportion 0.205

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Mechanics 4

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A circular flywheel of radius 0.2 m is rotating freely about a fixed axis through its centre and perpendicular to its plane. The moment of inertia of the flywheel about the axis is $0.37 \mathrm{~kg} \mathrm{~m}^{2}$. When the angular speed of the flywheel is $8 \mathrm{rad} \mathrm{s}^{-1}$ a particle of mass 0.75 kg , initially at rest, sticks to a point on the circumference of the flywheel. Find
(i) the angular speed of the flywheel immediately after the particle has stuck to it,
(ii) the loss of energy that results when the particle sticks to the flywheel.

2 A uniform solid sphere, of mass 4 kg and radius 0.1 m , is rotating freely about a fixed axis with angular speed $20 \mathrm{rad} \mathrm{s}^{-1}$. The axis is a diameter of the sphere. A couple, having constant moment 0.36 N m about the axis and acting in the direction of rotation, is then applied for 6 seconds. For this time interval, find
(i) the angular acceleration of the sphere,
(ii) the angle through which the sphere turns,
(iii) the work done by the couple.

3 The region bounded by the x-axis, the y-axis, and the curve $y=4-x^{2}$ for $0 \leqslant x \leqslant 2$, is occupied by a uniform lamina of mass 35 kg . The unit of length is the metre. Show that the moment of inertia of the lamina about the y-axis is $28 \mathrm{~kg} \mathrm{~m}^{2}$.

4 A straight $\operatorname{rod} A B$ of length a has variable density, and at a distance x from A its mass per unit length is $k\left(1+\frac{x^{2}}{a^{2}}\right)$, where k is a constant.
(i) Find the distance of the centre of mass of the rod from A.

You are given that the moment of inertia of the rod about a perpendicular axis through A is $\frac{8}{15} k a^{3}$.
(ii) Show that the period of oscillation of the rod as a compound pendulum, when freely pivoted at the other end B, is $2 \pi \sqrt{\frac{22 a}{35 g}}$.

5 A uniform $\operatorname{rod} A B$, of mass m and length $2 a$, is free to rotate in a vertical plane about a fixed horizontal axis through A. The rod is released from rest with $A B$ horizontal. Air resistance may be neglected. For the instant when the rod has rotated through an angle $\frac{1}{6} \pi$,
(i) show that the angular acceleration of the rod is $\frac{(3 \sqrt{ } 3) g}{8 a}$,
(ii) find the angular speed of the rod,
(iii) show that the force acting on the rod at A has magnitude $\frac{\sqrt{ } 103}{8} m g$.

A cylinder with radius a is fixed with its axis horizontal. A uniform rod, of mass m and length $2 b$, moves in a vertical plane perpendicular to the axis of the cylinder, maintaining contact with the cylinder and not slipping (see diagram). When the rod is horizontal, its mid-point G is in contact with the cylinder. You are given that, when the rod makes an angle θ with the horizontal, the height of G above the axis of the cylinder is $a(\theta \sin \theta+\cos \theta)$.
(i) By considering the potential energy of the rod, show that $\theta=0$ is a position of stable equilibrium. [6]
(ii) You are also given that, when θ is small, the kinetic energy of the rod is approximately $\frac{1}{6} m b^{2} \dot{\theta}^{2}$. Show that the approximate period of small oscillations about the position $\theta=0$ is $\frac{2 \pi b}{\sqrt{ }(3 g a)}$.

7 An unidentified object U is flying horizontally due east at a constant speed of $220 \mathrm{~m} \mathrm{~s}^{-1}$. An aircraft is 15000 m from U and is at the same height as U. The bearing of U from the aircraft is 310°.
(i) Assume that the aircraft flies in a straight line at a constant speed of $160 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Find the bearings of the two possible directions in which the aircraft can fly to intercept U.
(b) Given that the interception occurs in the shorter of the two possible times, find the time taken to make the interception.
(ii) Assuming instead that the aircraft flies in a straight line at a constant speed of $130 \mathrm{~m} \mathrm{~s}^{-1}$, show that the nearest the aircraft can come to U is approximately 988 m .

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4731
Mechanics 4
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability and Statistics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Janet and John wanted to compare their daily journey times to work, so they each kept a record of their journey times for a few weeks.
(i) Janet's daily journey times, x minutes, for a period of 25 days, were summarised by $\Sigma x=2120$ and $\Sigma x^{2}=180044$. Calculate the mean and standard deviation of Janet's journey times.
(ii) John's journey times had a mean of 79.7 minutes and a standard deviation of 6.22 minutes. Describe briefly, in everyday terms, how Janet and John's journey times compare.

2 Two independent assessors awarded marks to each of 5 projects. The results were as shown in the table.

Project	A	B	C	D	E
First assessor	38	91	62	83	61
Second assessor	56	84	41	85	62

(i) Calculate Spearman's rank correlation coefficient for the data.
(ii) Show, by sketching a suitable scatter diagram, how two assessors might have assessed 5 projects in such a way that Spearman's rank correlation coefficient for their marks was +1 while the product moment correlation coefficient for their marks was not +1 . (Your scatter diagram need not be drawn accurately to scale.)

3 Five friends, Ali, Bev, Carla, Don and Ed, stand in a line for a photograph.
(i) How many different possible arrangements are there if Ali, Bev and Carla stand next to each other?
(ii) How many different possible arrangements are there if none of Ali, Bev and Carla stand next to each other?
(iii) If all possible arrangements are equally likely, find the probability that two of Ali, Bev and Carla are next to each other, but the third is not next to either of the other two.

4 Each packet of the breakfast cereal Fizz contains one plastic toy animal. There are five different animals in the set, and the cereal manufacturers use equal numbers of each. Without opening a packet it is impossible to tell which animal it contains. A family has already collected four different animals at the start of a year and they now need to collect an elephant to complete their set. The family is interested in how many packets they will need to buy before they complete their set.
(i) Name an appropriate distribution with which to model this situation. State the value(s) of any parameter(s) of the distribution, and state also any assumption(s) needed for the distribution to be a valid model.
(ii) Find the probability that the family will complete their set with the third packet they buy after the start of the year.
(iii) Find the probability that, in order to complete their collection, the family will need to buy more than 4 packets after the start of the year.

5 A sixth-form class consists of 7 girls and 5 boys. Three students from the class are chosen at random. The number of boys chosen is denoted by the random variable X. Show that
(i) $\mathrm{P}(X=0)=\frac{7}{44}$,
(ii) $\mathrm{P}(X=2)=\frac{7}{22}$.

The complete probability distribution of X is shown in the following table.

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{7}{44}$	$\frac{21}{44}$	$\frac{7}{22}$	$\frac{1}{22}$

(iii) Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

The diagram shows the cumulative frequency graphs for the marks scored by the candidates in an examination. The 2000 candidates each took two papers; the upper curve shows the distribution of marks on paper 1 and the lower curve shows the distribution on paper 2. The maximum mark on each paper was 100.
(i) Use the diagram to estimate the median mark for each of paper 1 and paper 2.
(ii) State with a reason which of the two papers you think was the easier one.
(iii) To achieve grade A on paper 1 candidates had to score 66 marks out of 100 . What mark on paper 2 gives equal proportions of candidates achieving grade A on the two papers? What is this proportion?
(iv) The candidates' marks for the two papers could also be illustrated by means of a pair of box-and whisker plots. Give two brief comments comparing the usefulness of cumulative frequency graphs and box-and-whisker plots for representing the data.

7 Items from a production line are examined for any defects. The probability that any item will be found to be defective is 0.15 , independently of all other items.
(i) A batch of 16 items is inspected. Using tables of cumulative binomial probabilities, or otherwise, find the probability that
(a) at least 4 items in the batch are defective,
(b) exactly 4 items in the batch are defective.
(ii) Five batches, each containing 16 items, are taken.
(a) Find the probability that at most 2 of these 5 batches contain at least 4 defective items.
(b) Find the expected number of batches that contain at least 4 defective items.

8 An experiment was conducted to see whether there was any relationship between the maximum tidal current, $y \mathrm{~cm} \mathrm{~s}^{-1}$, and the tidal range, x metres, at a particular marine location. [The tidal range is the difference between the height of high tide and the height of low tide.] Readings were taken over a period of 12 days, and the results are shown in the following table.

x	2.0	2.4	3.0	3.1	3.4	3.7	3.8	3.9	4.0	4.5	4.6	4.9
y	15.2	22.0	25.2	33.0	33.1	34.2	51.0	42.3	45.0	50.7	61.0	59.2

$$
\left[\Sigma x=43.3, \Sigma y=471.9, \Sigma x^{2}=164.69, \Sigma y^{2}=20915.75, \Sigma x y=1837.78 .\right]
$$

The scatter diagram below illustrates the data.

(i) Calculate the product moment correlation coefficient for the data, and comment briefly on your answer with reference to the appearance of the scatter diagram.
(ii) Calculate the equation of the regression line of maximum tidal current on tidal range.
(iii) Estimate the maximum tidal current on a day when the tidal range is 4.2 m , and comment briefly on how reliable you consider your estimate is likely to be.
(iv) It is suggested that the equation found in part (ii) could be used to predict the maximum tidal current on a day when the tidal range is 15 m . Comment briefly on the validity of this suggestion.
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4732
Probability and Statistics 1
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability \& Statistics 2

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 The standard deviation of a random variable F is 12.0 . The mean of n independent observations of F is denoted by \bar{F}.
(i) Given that the standard deviation of \bar{F} is 1.50 , find the value of n.
(ii) For this value of n, state, with justification, what can be said about the distribution of \bar{F}.

2 A certain neighbourhood contains many small houses (with small gardens) and a few large houses (with large gardens). A sample survey of all houses is to be carried out in this neighbourhood. A student suggests that the sample could be selected by sticking a pin into a map of the neighbourhood the requisite number of times, while blindfolded.
(i) Give two reasons why this method does not produce a random sample.
(ii) Describe a better method.

3 Sixty people each make two throws with a fair six-sided die.
(i) State the probability of one particular person obtaining two sixes.
(ii) Using a suitable approximation, calculate the probability that at least four of the sixty obtain two sixes.

4 The random variable G has mean 20.0 and standard deviation σ. It is given that $\mathrm{P}(G>15.0)=0.6$. Assume that G is normally distributed.
(i) (a) Find the value of σ.
(b) Given that $\mathrm{P}(G>g)=0.4$, find the value of $\mathrm{P}(G>2 g)$.
(ii) It is known that no values of G are ever negative. State with a reason what this tells you about the assumption that G is normally distributed.

5 The mean solubility rating of widgets inserted into beer cans is thought to be 84.0 , in appropriate units. A random sample of 50 widgets is taken. The solubility ratings, x, are summarised by

$$
n=50, \quad \Sigma x=4070, \quad \Sigma x^{2}=336100
$$

Test, at the 5% significance level, whether the mean solubility rating is less than 84.0.

6 On average a motorway police force records one car that has run out of petrol every two days.
(i) (a) Using a Poisson distribution, calculate the probability that, in one randomly chosen day, the police force records exactly two cars that have run out of petrol.
(b) Using a Poisson distribution and a suitable approximation to the binomial distribution, calculate the probability that, in one year of 365 days, there are fewer than 205 days on which the police force records no cars that have run out of petrol.
(ii) State an assumption needed for the Poisson distribution to be appropriate in part (i), and explain why this assumption is unlikely to be valid.

7 The time, in minutes, for which a customer is prepared to wait on a telephone complaints line is modelled by the random variable X. The probability density function of X is given by

$$
\mathrm{f}(x)= \begin{cases}k x\left(9-x^{2}\right) & 0 \leqslant x \leqslant 3 \\ 0 & \text { otherwise }\end{cases}
$$

where k is a constant.
(i) Show that $k=\frac{4}{81}$.
(ii) Find $\mathrm{E}(X)$.
(iii) (a) Show that the value y which satisfies $\mathrm{P}(X<y)=\frac{3}{5}$ satisfies

$$
\begin{equation*}
5 y^{4}-90 y^{2}+243=0 . \tag{4}
\end{equation*}
$$

(b) Using the substitution $w=y^{2}$, or otherwise, solve the equation in part (a) to find the value of y.

8 The proportion of left-handed adults in a country is known to be 15%. It is suggested that for mathematicians the proportion is greater than 15%. A random sample of 12 members of a university mathematics department is taken, and it is found to include five who are left-handed.
(i) Stating your hypotheses, test whether the suggestion is justified, using a significance level as close to 5% as possible.
(ii) In fact the significance test cannot be carried out at a significance level of exactly 5%. State the probability of making a Type I error in the test.
(iii) Find the probability of making a Type II error in the test for the case when the proportion of mathematicians who are left-handed is actually 20%.
(iv) Determine, as accurately as the tables of cumulative binomial probabilities allow, the actual proportion of mathematicians who are left-handed for which the probability of making a Type II error in the test is 0.01 .

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Probability \& Statistics 2
MARK SCHEME

Specimen Paper

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Probability \& Statistics 3

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A car repair firm receives call-outs both as a result of breakdowns and also as a result of accidents. On weekdays (Monday to Friday), call-outs resulting from breakdowns occur at random, at an average rate of 6 per 5-day week; call-outs resulting from accidents occur at random, at an average rate of 2 per 5 -day week. The two types of call-out occur independently of each other. Find the probability that the total number of call-outs received by the firm on one randomly chosen weekday is more than 3 .

2 Boxes of matches contain 50 matches. Full boxes have mean mass 20.0 grams and standard deviation 0.4 grams. Empty boxes have mean mass 12.5 grams and standard deviation 0.2 grams. Stating any assumptions that you need to make, calculate the mean and standard deviation of the mass of a match. [7]

3 A random sample of 80 precision-engineered cylindrical components is checked as part of a quality control process. The diameters of the cylinders should be 25.00 cm . Accurate measurements of the diameters, $x \mathrm{~cm}$, for the sample are summarised by

$$
\Sigma(x-25)=0.44, \quad \Sigma(x-25)^{2}=0.2287 .
$$

(i) Calculate a 99% confidence interval for the population mean diameter of the components.
(ii) For the calculation in part (i) to be valid, is it necessary to assume that component diameters are normally distributed? Justify your answer.

4 The lengths of time, in seconds, between vehicles passing a fixed observation point on a road were recorded at a time when traffic was flowing freely. The frequency distribution in Table 1 is a summary of the data from 100 observations.

Time interval $(x$ seconds)	$0<x \leqslant 5$	$5<x \leqslant 10$	$10<x \leqslant 20$	$20<x \leqslant 40$	$40<x$
Observed frequency	49	22	20	7	2

Table 1
It is thought that the distribution of times might be modelled by the continuous random variable X with probability density function given by

$$
\mathrm{f}(x)= \begin{cases}0.1 \mathrm{e}^{-0.1 x} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Using this model, the expected frequencies (correct to 2 decimal places) for the given time intervals are shown in Table 2.

Time interval (x seconds)	$0<x \leqslant 5$	$5<x \leqslant 10$	$10<x \leqslant 20$	$20<x \leqslant 40$	$40<x$
Expected frequency	39.35	23.87	23.25	11.70	1.83

Table 2
(i) Show how the expected frequency of 23.87 , corresponding to the interval $5<x \leqslant 10$, is obtained. [5]
(ii) Test, at the 10% significance level, the goodness of fit of the model to the data.

5 The continuous random variable X has a triangular distribution with probability density function given by

$$
\mathrm{f}(x)=\left\{\begin{array}{lr}
1+x & -1 \leqslant x \leqslant 0 \\
1-x & 0 \leqslant x \leqslant 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(i) Show that, for $0 \leqslant a \leqslant 1$,

$$
\begin{equation*}
\mathrm{P}(|X| \leqslant a)=2 a-a^{2} \tag{3}
\end{equation*}
$$

The random variable Y is given by $Y=X^{2}$.
(ii) Express $\mathrm{P}(Y \leqslant y)$ in terms of y, for $0 \leqslant y \leqslant 1$, and hence show that the probability density function of Y is given by

$$
\begin{equation*}
\mathrm{g}(y)=\frac{1}{\sqrt{ } y}-1, \quad \text { for } 0<y \leqslant 1 \tag{4}
\end{equation*}
$$

(iii) Use the probability density function of Y to find $\mathrm{E}(Y)$, and show how the value of $\mathrm{E}(Y)$ may also be obtained directly using the probability density function of X.
(iv) Find $\mathrm{E}(\sqrt{ } Y)$.

6 Certain types of food are now sold in metric units. A random sample of 1000 shoppers was asked whether they were in favour of the change to metric units or not. The results, classified according to age, were as shown in the table.

	Age of shopper		
	Under 35	35 and over	Total
In favour of change	187	161	348
Not in favour of change	283	369	652
Total	470	530	1000

(i) Use a χ^{2} test to show that there is very strong evidence that shoppers' views about changing to metric units are not independent of their ages.
(ii) The data may also be regarded as consisting of two random samples of shoppers; one sample consists of 470 shoppers aged under 35 , of whom 187 were in favour of change, and the second sample consists of 530 shoppers aged 35 or over, of whom 161 were in favour of change. Determine whether a test for equality of population proportions supports the conclusion in part (i).

7 A factory manager wished to compare two methods of assembling a new component, to determine which method could be carried out more quickly, on average, by the workforce. A random sample of 12 workers was taken, and each worker tried out each of the methods of assembly. The times taken, in seconds, are shown in the table.

Worker	A	B	C	D	E	F	G	H	I	J	K	L
Time in seconds for Method 1	48	38	47	59	62	41	50	52	58	54	49	60
Time in seconds for Method 2	47	40	38	55	57	42	42	40	62	47	47	51

(i) (a) Carry out an appropriate t-test, using a 2% significance level, to test whether there is any difference in the times for the two methods of assembly.
(b) State an assumption needed in carrying out this test.
(c) Calculate a 95% confidence interval for the population mean time difference for the two methods of assembly.
(ii) Instead of using the same 12 workers to try both methods, the factory manager could have used two independent random samples of workers, allocating Method 1 to the members of one sample and Method 2 to the members of the other sample.
(a) State one disadvantage of a procedure based on two independent random samples.
(b) State any assumptions that would need to be made to carry out a t-test based on two independent random samples.

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Probability \& Statistics 3
MARK SCHEME

Specimen Paper

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4735

Probability \& Statistics 4

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 A continuous random variable X has moment generating function given by

$$
\begin{equation*}
\mathrm{M}_{X}(t)=\frac{9}{(3-t)^{2}} . \tag{5}
\end{equation*}
$$

Find the mean and variance of X.

2 The events A and B are independent, and $\mathrm{P}(A)=\mathrm{P}(B)=p$, where $0<p<1$.
(i) Express $\mathrm{P}(A \cup B)$ in terms of p.
(ii) Given that $\mathrm{P}((A \cap B) \mid(A \cup B))=\frac{1}{2}$, find the value of $\mathrm{P}\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right)$.

3 A University's Department of Computing is interested in whether students who have passed A level Mathematics perform better in Computing examinations that those who have not.

A random sample of 19 students was taken from those students who took a particular first year Computing examination. This sample included 12 students who have passed A level Mathematics and 7 students who have not. The marks gained in the Computing examination were as follows:

Students who have passed A level Mathematics: 27, 34, 39, 41, 45, 47, 55, 59, 66, 75, 78, 86.
Students who have not passed A level Mathematics: 17, 21, 28, 35, 37, 54, 64.
Use a suitable non-parametric test to determine if there is evidence, at the 5% significance level, that students who have passed A level Mathematics gain a higher average mark than students who have not passed A level Mathematics. (A normal approximation may be used.)

4 The continuous random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}k x & 0 \leqslant x \leqslant a \\ 0 & \text { otherwise },\end{cases}
$$

where k is a constant and the value of the parameter a is unknown.
(i) Show that $k=\frac{2}{a^{2}}$.

The random variable U is defined by $U=\frac{3}{2} X$.
(ii) Show that U is an unbiased estimator of a.
(iii) Find, in terms of a, the variance of U.

The random variable λX^{n}, where n is a positive integer and λ is a constant, is an unbiased estimator of a^{n}.
(iv) Express λ in terms of n.
(i) Explain briefly the circumstances under which a non-parametric test of significance should be used in preference to a parametric test.

The acidity of soil can be measured by its pH value. As a part of a Geography project a student measured the pH values of 14 randomly chosen samples of soil in a certain area, with the following results.
$\begin{array}{lll}5.67 & 5.73 & 6.64\end{array}$
6.76
$\begin{array}{lll}6.10 & 5.41 & 5.80\end{array}$
6.52
5.16
$\begin{array}{llll}5.10 & 6.71 & 5.89 & 5.68\end{array}$
5.37
(ii) Use a Wilcoxon signed-rank test to test whether the average pH value for soil in this area is 6.24 . Use a 10% level of significance.

Some time later, the pH values of soil samples taken at exactly the same locations as before were again measured. It was found that, for 3 of the 14 locations, the new pH value was higher than the previous value, while for the other 11 locations the new value was lower.
(iii) Test, at the 5% significance level, whether there is evidence that the average pH value of soil in this area is lower than previously.

6 The joint probability distribution of the discrete random variables X and Y is shown in the following table.

| x | | | |
| :---: | :---: | :---: | :---: | | | -1 | 0 |
| :---: | :---: | :---: |
| 2 | $\frac{1}{6}$ | $\frac{2}{9}$ |
| 3 | $\frac{5}{18}$ | $\frac{1}{3}$ |

(i) Show that $\mathrm{E}(X)=-\frac{4}{9}$ and find $\operatorname{Var}(X)$.
(ii) Write down the distributions of X conditional on $Y=2$ and X conditional on $Y=3$. Find the means of these conditional distributions, and hence verify that

$$
\begin{equation*}
\mathrm{E}(X)=\mathrm{E}(X \mid Y=2) \times \mathrm{P}(Y=2)+\mathrm{E}(X \mid Y=3) \times \mathrm{P}(Y=3) \tag{3}
\end{equation*}
$$

It is given that $\mathrm{E}(Y)=\frac{47}{18}$ and $\operatorname{Var}(Y)=\frac{77}{324}$.
(iii) Find $\operatorname{Cov}(X, Y)$ and state, with a reason, whether X and Y are independent.
(iv) Find $\operatorname{Var}(X+Y)$.

7 The random variable X has a geometric distribution with parameter p.
(i) Show that the probability generating function $\mathrm{G}_{X}(t)$ of X is given by

$$
\begin{equation*}
\mathrm{G}_{X}(t)=\frac{p t}{1-t(1-p)} . \tag{3}
\end{equation*}
$$

(ii) Hence show that $\mathrm{E}(X)=\frac{1}{p}$ and that $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.

A child has 4 fair, six-sided dice, one white, one yellow, one blue and one red.
(iii) The child rolls the white die repeatedly until the die shows a six. The number of rolls up to and including the roll on which the white die first shows a six is denoted by W. Write down an expression for $\mathrm{G}_{W}(t)$.
(iv) The child then repeats this process with the yellow die, then with the blue die and then with the red die. By finding an appropriate probability generating function, find the probability that the total number of rolls of the four dice, up to and including the roll on which the red die first shows a six, is exactly 24 .

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Probability \& Statistics 4
MARK SCHEME

Specimen Paper

1 EITHER: $\mathrm{M}_{X}^{\prime}(t)=\frac{18}{(3-t)^{3}}$ Hence $\mathrm{E}(X)=\mathrm{M}_{X}^{\prime}(0)=\frac{2}{3}$ $\mathrm{M}_{X}^{\prime \prime}(t)=\frac{54}{(3-t)^{4}}$ Hence $\operatorname{Var}(X)=\mathrm{M}_{X}^{\prime \prime}(0)-\{\mathrm{E}(X)\}^{2}=\frac{2}{3}-\frac{4}{9}=\frac{2}{9}$ OR: $\quad \mathrm{M}_{X}(t)=1+\frac{2}{3} t+\frac{1}{3} t^{2}+\ldots$ Hence $\mathrm{E}(X)=\frac{2}{3}$ $\operatorname{Var}(X)=(2!) \times \frac{1}{3}-\{\mathrm{E}(X)\}^{2}=\frac{2}{3}-\frac{4}{9}=\frac{2}{9}$	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } \checkmark & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } \checkmark & \\ \text { M1 } & \\ \text { A1 } \checkmark & \mathbf{5} \\ \hline \end{array}$	For correct differentiation of the mgf For correct value for the mean For correct second derivative For correct method for the variance For correct answer For attempting binomial expansion of mgf For first three terms correct (unsimplified) For correct value for the mean For correct method for the variance For correct answer
2 (i) $\mathrm{P}(A \cup B)=p+p-p \times p=2 p-p^{2}$ (ii) $\frac{p^{2}}{2 p-p^{2}}=\frac{1}{2} \Rightarrow 2 p=2-p \Rightarrow p=\frac{2}{3}$ Hence $\mathrm{P}\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right)=2 \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{9}$	M1 B1 A1 $\mathbf{3}$ -----------1 B1 M1 A1 M1 A1 $\mathbf{5}$ $\mathbf{8}$	For use of $\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$ For $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ since independent For correct expression $2 p-p^{2}$ For equation $\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A \cup B)}=\frac{1}{2}$ For solving relevant equation for p For correct value For calculation of $2 p(1-p)$ or equivalent For correct answer $\frac{4}{9}$
$3 \quad \mathrm{H}_{0}$: population medians equal, H_{1} : higher median for those who passed Mathematics Ranking: Pass: 3, 5, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19 Not pass: 1, 2, 4, 6, 7, 12, 15 Sum of ranks of those not passing is 47 $R_{m} \sim \mathrm{~N}\left(\frac{1}{2} \times 7 \times 20, \frac{1}{12} \times 7 \times 12 \times 20\right)=\mathrm{N}(70,140)$ EITHER: Test statistic is $\frac{47.5-70}{\sqrt{ } 140}=-1.902$ This is less than -1.645 OR: \quad Critical region is $\frac{X+0.5-70}{\sqrt{ } 140}<-1.645$ i.e. $X \leqslant 50$ Sample value 47 lies in the critical region Hence there is evidence that those passing Mathematics have a higher average score	B1 M1 A1 M1 A1 A1 M1 M1 A2 M1 A1 \checkmark $\mathbf{1 0}$ $\mathbf{1 0}$	For both hypotheses stated correctly For attempt at ranking correctly For correct sum of ranks For using the appropriate normal approx For both parameters correct For standardising For correct value of test statistic (allow A1 if correct apart from missing or wrong c.c.) For comparison with correct critical value For setting up the appropriate inequality For correct critical region (allow A1 if correct apart from missing or wrong c.c.) For comparing 47 with critical region For conclusion stated in context

6 (i) Marginal probabilities for X are $\frac{4}{9}, \frac{5}{9}$ Hence $\mathrm{E}(X)=-1 \times \frac{4}{9}+0 \times \frac{5}{9}=-\frac{4}{9}$ $\operatorname{Var}(X)=(-1)^{2} \times \frac{4}{9}-\left(-\frac{4}{9}\right)^{2}=\frac{20}{81}$	B1 B1 M1 A1 	For appropriate addition For showing the given answer correctly For correct process for variance For correct value
(ii) Hence $\mathrm{E}(X \mid Y=2)=-\frac{3}{7}, \mathrm{E}(X \mid Y=3)=-\frac{5}{11}$ RHS $=-\frac{3}{7} \times \frac{7}{18}-\frac{5}{11} \times \frac{11}{18}=-\frac{4}{9}=\mathrm{E}(X)$	$\begin{array}{\|ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	For both conditional distributions correct For both conditional expectations correct For correct verification
(iii) $\mathrm{E}(X Y)=-2 \times \frac{1}{6}-3 \times \frac{5}{18}=-\frac{7}{6}$ $\operatorname{Cov}(X, Y)=-\frac{7}{6}-\left(-\frac{4}{9}\right) \times \frac{47}{18}=-\frac{1}{162}$ X and Y are not independent, as $\operatorname{Cov}(X, Y) \neq 0$	$\left\lvert\, \begin{array}{ll} \mathrm{M} 1 & \\ \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \mathbf{4} \end{array}\right.$	For evaluation of $\mathrm{E}(X Y)$ For correct method for $\operatorname{Cov}(X, Y)$ For correct value (fraction or decimal) For correct conclusion, with correct reason
(iv) $\operatorname{Var}(X+Y)=\frac{20}{81}+\frac{77}{324}-\frac{2}{162}-\frac{17}{36}$	$\begin{array}{\|rr} \text { M1 } & \\ \text { A1 } & \mathbf{2} \\ & \mathbf{1 3} \\ \hline \end{array}$	For use of $\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$ For correct value
$7 \quad$ (i) $\begin{aligned} \mathrm{G}_{X}(t) & =\sum_{r=1}^{\infty} q^{r-1} p t^{r}, \text { where } q=1-p \\ & =p t \sum_{r=1}^{\infty}(q t)^{r-1}=\frac{p t}{1-q t}=\frac{p t}{1-(1-p) t} \end{aligned}$	$\begin{array}{\|ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	For correct statement of the required sum For summing the relevant GP For showing the given answer correctly
(ii) $\quad \mathrm{G}_{X}^{\prime}(t)=\frac{p}{(1-q t)^{2}}$ Hence $\mathrm{E}(X)=\mathrm{G}_{X}^{\prime}(1)=\frac{p}{p^{2}}=\frac{1}{p}$ $\mathrm{G}_{X}^{\prime \prime}(t)=\frac{2 p q}{(1-q t)^{3}}$ Hence $\operatorname{Var}(X)=\mathrm{G}_{X}^{\prime \prime}(1)+\frac{1}{p}-\frac{1}{p^{2}}$ $=\frac{2 p q}{p^{3}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{q}{p^{2}}=\frac{1-p}{p^{2}}$		For correct derivative, in any form For showing the given answer correctly For correct second derivative, in any form For use of $\mathrm{G}^{\prime \prime}(1)+\mathrm{G}^{\prime}(1)-\left\{\mathrm{G}^{\prime}(1)\right\}^{2}$ For showing the given answer correctly
(iii) $\quad \mathrm{G}_{W}(t)=\frac{\frac{1}{6} t}{1-\frac{5}{6} t}$	B1	For correct expression, in any form
(iv) Required pgf is $\left(\frac{\frac{1}{6} t}{1-\frac{5}{6} t}\right)^{4}$ Required probability is the coefficient of t^{24} This is $\begin{aligned} & s\left(\frac{1}{6}\right)^{4} \times \frac{(-4)(-5)(-6) \ldots(-23)}{20!} \times\left(\frac{5}{6}\right)^{20} \\ & \approx 0.0356 \end{aligned}$	B1 B1 M1 A1 $\mathbf{4}$ $\mathbf{1 3}$	For stating fourth power of $\mathrm{G}_{W}(t)$ For stating or implying the required coeff For use of appropriate binomial coefficient For correct value

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4736

Decision Mathematics 1

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 The graph K_{5} has five nodes, A, B, C, D and E, and there is an arc joining every node to every other node.
(i) Draw the graph K_{5} and state how you know that it is Eulerian.
(ii) By listing the arcs involved, give an example of a path in K_{5}. (Your path must include more than one arc.)
(iii) By listing the arcs involved, give an example of a cycle in K_{5}.

2 This question is about a simply connected network with at least three arcs joining 4 nodes. The weights on the arcs are all different and any direct paths always have a smaller weight than the total weight of any indirect paths between two vertices.
(i) Kruskal's algorithm is used to construct a minimum connector. Explain why the arcs with the smallest and second smallest weights will always be included in this minimum connector.
(ii) Draw a diagram to show that the arc with the third smallest weight need not always be included in a minimum connector.
(i) Use the shuttle sort algorithm to sort the list

$$
\begin{array}{lllll}
6 & 3 & 8 & 3 & 2 \tag{5}
\end{array}
$$

into increasing order. Write down the list that results from each pass through the algorithm.
(ii) Shuttle sort is a quadratic order algorithm. Explain briefly what this statement means.

4 [Answer this question on the insert provided.]
An algorithm involves the following steps.
Step 1: Input two positive integers, A and B.
Let $C=0$
Step 2: If B is odd, replace C by $C+A$.
Step 3: If $B=1$, go to step 6.
Step 4: Replace A by $2 A$.
If B is even, replace B by $B \div 2$, otherwise replace B by $(B-1) \div 2$.
Step 5: Go back to step 2.
Step 6: Output the value of C.
(i) Demonstrate the use of the algorithm for the inputs $A=6$ and $B=13$.
(ii) When $B=8$, what is the output in terms of A ? What is the relationship between the output and the original inputs?

5 [Answer this question on the insert provided.]

In this network the vertices represent towns, the arcs represent roads and the weights on the arcs show the shortest distances in kilometres.
(i) The diagram on the insert shows the result of deleting vertex F and all the arcs joined to F. Show that a lower bound for the length of the travelling salesperson problem on the original network is 38 km .

The corresponding lower bounds by deleting each of the other vertices are:

$$
A: 40 \mathrm{~km}, \quad B: 39 \mathrm{~km}, \quad C: 35 \mathrm{~km}, \quad D: 37 \mathrm{~km}, \quad E: 35 \mathrm{~km} .
$$

The route $A-B-C-D-E-F-A$ has length 47 km .
(ii) Using only this information, what are the best upper and lower bounds for the length of the solution to the travelling salesperson problem on the network?
(iii) By considering the orders in which vertices C, D and E can be visited, find the best upper bound given by a route of the form $A-B-\ldots-F-A$.

6 [Answer part (i) of this question on the insert provided.]
The diagram shows a simplified version of an orienteering course. The vertices represent checkpoints and the weights on the arcs show the travel times between checkpoints, in minutes.

(i) Use Dijkstra's algorithm, starting from checkpoint \boldsymbol{A}, to find the least travel time from A to D. You must show your working, including temporary labels, permanent labels and the order in which permanent labels were assigned. Give the route that takes the least time from A to D.
(ii) By using an appropriate algorithm, find the least time needed to travel every arc in the diagram starting and ending at A. You should show your method clearly.
(iii) Starting from A, apply the nearest neighbour algorithm to the diagram to find a cycle that visits every checkpoint. Use your solution to find a path that visits every checkpoint, starting from A and finishing at D.

7 Consider the linear programming problem:

maximise	$P=4 y-x$,
subject to	$x+4 y \leqslant 22$,
	$x+y \leqslant 10$,
	$-x+2 y \leqslant 8$,
and	$x \geqslant 0, y \geqslant 0$.

(i) Represent the constraints graphically, shading out the regions where the inequalities are not satisfied. Calculate the value of x and the value of y at each of the vertices of the feasible region. Hence find the maximum value of P, clearly indicating where it occurs.
(ii) By introducing slack variables, represent the problem as an initial Simplex tableau and use the Simplex algorithm to solve the problem.
(iii) Indicate on your diagram for part (i) the points that correspond to each stage of the Simplex algorithm carried out in part (ii).

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS
4736
Decision Mathematics 1
INSERT for Questions 4, 5 and 6

Specimen Paper

INSTRUCTIONS TO CANDIDATES

- This insert should be used to answer Questions 4, 5 and 6 (i).
- Write your Name, Centre Number and Candidate Number in the spaces provided at the top of this page.
- Write your answers to Questions 4, 5 and 6 (i) in the spaces provided in this insert, and attach it to your answer booklet.

4 (i)

STEP	A	B	C
1			
2			

(ii)

STEP	A	B	C
1			
2			

(i)

(ii) Upper bound = km Lower bound $=$ km
(iii) \qquad
\qquad
\qquad
\qquad

Best upper bound $=$
km

6 (i)

Key:
Order of becoming permanent
Permanent value

Temporary values
(do not cross out working)
\qquad
\qquad

Least travel time $=$ minutes

Route: $A-$ - D
OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
MATHEMATICS 4736
Decision Mathematics 1
MARK SCHEME
Specimen Paper
MAXIMUM MARK72

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4737
Decision Mathematics 2

Specimen Paper

Additional materials:
Answer booklet
Graph paper
List of Formulae (MF 1)

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 [Answer this question on the insert provided.]

Six neighbours have decided to paint their houses in bright colours. They will each use a different colour.

- Arthur wants to use lavender, orange or tangerine.
- Bridget wants to use lavender, mauve or pink.
- Carlos wants to use pink or scarlet.
- Davinder wants to use mauve or pink.
- Eric wants to use lavender or orange.
- Ffion wants to use mauve.

Arthur chooses lavender, Bridget chooses mauve, Carlos chooses pink and Eric chooses orange. This leaves Davinder and Ffion with colours that they do not want.
(i) Draw a bipartite graph on the insert, showing which neighbours (A, B, C, D, E, F) want which colours (L, M, O, P, S, T). On a separate diagram on the insert, show the incomplete matching described above.
(ii) By constructing alternating paths obtain the complete matching between the neighbours and the colours. Give your paths and show your matching on the insert.
(iii) Fill in the table on the insert to show how the Hungarian algorithm could have been used to find the complete matching. (You do not need to carry out the Hungarian algorithm.)

2 A company has organised four regional training sessions to take place at the same time in four different cities. The company has to choose four of its five trainers, one to lead each session. The cost ($£ 1000$ ’s) of using each trainer in each city is given in the table.

		City			
		London	Glasgow	Manchester	Swansea
Trainer	Adam	4	3	2	4
	Betty	3	5	4	2
	Clive	3	6	3	3
	Dave	2	6	4	3
	Eleanor	2	5	3	4

(i) Convert this into a square matrix and then apply the Hungarian algorithm, reducing rows first, to allocate the trainers to the cities at minimum cost.
(ii) Betty discovers that she is not available on the date set for the training. Find the new minimum cost allocation of trainers to cities.

3 [Answer this question on the insert provided.]
A flying doctor travels between islands using small planes. Each flight has a weight limit that restricts how much he can carry. A plague has broken out on Farr Island and the doctor needs to take several crates of medical supplies to the island. The crates must be carried on the same planes as the doctor.

The diagram shows a network with (stage; state) variables at the vertices representing the islands, arcs representing flight routes that can be used, and weights on the arcs representing the number of crates that the doctor can carry on each flight.

(i) It is required to find the route from $(0 ; 0)$ to $(3 ; 0)$ for which the minimum number of crates that can be carried on any stage is a maximum (the maximin route). The insert gives a dynamic programming tabulation showing stages, states and actions, together with columns for working out the route minimum at each stage and for indicating the current maximin.

Complete the table on the insert sheet and hence find the maximin route and the maximum number of crates that can be carried.
(ii) It is later found that the number of crates that can be carried on the route from $(2 ; 0)$ to $(3 ; 0)$ has been recorded incorrectly and should be 15 instead of 5 . What is the maximin route now, and how many crates can be carried?

4 Henry is planning a surprise party for Lucinda. He has left the arrangements until the last moment, so he will hold the party at their home. The table below lists the activities involved, the expected durations, the immediate predecessors and the number of people needed for each activity. Henry has some friends who will help him, so more than one activity can be done at a time.

Activity	Duration (hours)	Preceded by	Number of people
$A:$ Telephone other friends	2	-	3
$B:$ Buy food	1	A	2
$C:$ Prepare food	4	B	5
$D:$ Make decorations	3	A	3
$E:$ Put up decorations	1	D	3
$F:$ Guests arrive	1	C, E	1

(i) Draw an activity network to represent these activities and the precedences. Carry out forward and reverse passes to determine the minimum completion time and the critical activities. If Lucinda is expected home at 7.00 p.m., what is the latest time that Henry or his friends can begin telephoning the other friends?
(ii) Draw a resource histogram showing time on the horizontal axis and number of people needed on the vertical axis, assuming that each activity starts at its earliest possible start time. What is the maximum number of people needed at any one time?
(iii) Now suppose that Henry's friends can start buying the food and making the decorations as soon as the telephoning begins. Construct a timetable, with a column for 'time' and a column for each person, showing who should do which activity when, in order than the party can be organised in the minimum time using a total of only six people (Henry and five friends). When should the telephoning begin with this schedule?

5 [Answer this question on the insert provided.]

Fig. 1 shows a directed flow network. The weight on each arc shows the capacity in litres per second.

Fig. 1
(i) Find the capacity of the cut \mathscr{C} shown.
(ii) Deduce that there is no possible flow from S to T in which both arcs leading into T are saturated. Explain your reasoning clearly.

Fig. 2 shows a possible flow of 160 litres per second through the network.

Fig. 2
(iii) On the diagram in the insert, show the excess capacities and potential backflows for this flow.
(iv) Use the labelling procedure to augment the flow as much as possible. Show your working clearly, but do not obscure your answer to part (iii).
(v) Show the final flow that results from part (iv). Explain clearly how you know that this flow is maximal.

6 Rose is playing a game against a computer. Rose aims a laser beam along a row, A, B or C, and, at the same time, the computer aims a laser beam down a column, X, Y or Z. The number of points won by Rose is determined by where the two laser beams cross. These values are given in the table. The computer loses whatever Rose wins.

Computer				
Rose \quad X Y Z A 1 3 4 B 4 3 2 C 3 2 1				

(i) Find Rose's play-safe strategy and show that the computer's play-safe strategy is Y. How do you know that the game does not have a stable solution?
(ii) Explain why Rose should never choose row C and hence reduce the game to a 2×3 pay-off matrix.
(iii) Rose intends to play the game a large number of times. She decides to use a standard six-sided die to choose between row A and row B, so that row A is chosen with probability a and row B is chosen with probability $1-a$. Show that the expected pay-off for Rose when the computer chooses column X is $4-3 a$, and find the corresponding expressions for when the computer chooses column Y and when it chooses column Z. Sketch a graph showing the expected pay-offs against a, and hence decide on Rose's optimal choice for a. Describe how Rose could use the die to decide whether to play A or B.

The computer is to choose X, Y and Z with probabilities x, y and z respectively, where $x+y+z=1$. Graham is an AS student studying the D1 module. He wants to find the optimal choices for x, y and z and starts off by producing a pay-off matrix for the computer.
(iv) Graham produces the following pay-off matrix.

3	1	0
0	1	2

Write down the pay-off matrix for the computer and explain what Graham did to its entries to get the values in his pay-off matrix.
(v) Graham then sets up the linear programming problem:

maximise	$P=p-4$,
subject to	$p-3 x-y \leqslant 0$,
	$p-y-2 z \leqslant 0$,
	$x+y+z \leqslant 1$,
and	$p \geqslant 0, x \geqslant 0, y \geqslant 0, z \geqslant 0$.

The Simplex algorithm is applied to the problem and gives $x=0.4$ and $y=0$. Find the values of z, p and P and interpret the solution in the context of the game.

BLANK PAGE

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS
4737
Decision Mathematics 2
INSERT for Questions 1, 3 and 5

Specimen Paper

INSTRUCTIONS TO CANDIDATES

- This insert should be used to answer Questions 1, 3 and 5.
- Write your Name, Centre Number and Candidate Number in the spaces provided at the top of this page.
- Write your answers to Questions 1, 3 and 5 in the spaces provided in this insert, and attach it to your answer booklet.
1
(i)
$\mathrm{A} \bullet$
$\mathrm{B} \bullet$
$\mathrm{C} \bullet$
$\mathrm{D} \bullet$
$\mathrm{E} \bullet$
$\mathrm{F} \bullet$
- L

A
B

D •

- P
Bipartite graph
- M
C.
- O
E•
- S
F•
- T
Matching described in question
(ii)
A•
- L
B •
- M
C•
- O
D•
- P
E•
- S
F
- T
(iii)

3 (i)

Stage	State	Action	Route minimum	Current maximin
2	0	0		
	1	0		
	2	0		
1	0	0		
		1		
	1	1		
		2		
	2	0		
		2		
0		0		
		1		
		2		

Route: \qquad
Maximum number of crates that can be carried: \qquad
(ii) \qquad
\qquad
\qquad
\qquad
(i) Capacity of \mathscr{C} : \qquad
(ii) \qquad
\qquad
(iii)

(iv) \qquad
\qquad
\qquad
(v) Final flow:

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education
 MATHEMATICS

Decision Mathematics 2
MARK SCHEME

Specimen Paper

BLANK PAGE

