

Mark Scheme (Results)

Summer 2013

International GCSE Mathematics (4MA0) Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036369
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
- Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- awrt answers which round to......
- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working

- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another. Apart from Questions 9, 13(a), 20dii and 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question Number	Working	Answer	Mark		Not	es
1	12:8 oe or8:12		2	M1		
		1.5 oe		A1		
						Total 2 marks
2		translation	2	B1	Also accept translated, translate etc	These marks are independent but award no marks if
		$\begin{pmatrix} -2\\1 \end{pmatrix}$		B1	Also accept 2 to the left and 1 up	the answer is not a single transformation
					·	Total 2 marks
3 (i)	3 × 2 + 4 × 5 + 5 × 14 + 6 × 19 + 7 × 10 or 6 + 20 + 70 + 114 + 70 or 280		4	M1	for sum of pro	
	"280" ÷ 50			M1	(dep) for divis	sion by 50
		5.6		A1		pt 6 if both method and 5 following 5.6
(ii)		5		B1	ft from their (
						Total 4 marks

4	(a)		(3, 2)	2	B2	B1 for 3 B1 for 2
	(b)	arc(s) centre P radius PA		2	M1	
			Cross at (6, 3)		A1	Accept any clear indication. Condone omission of label if no ambiguity
						Total 4 marks
			, ,		1	
5	(a)(i)	$\frac{15}{100} \times 280 \text{ or } 42$		3	M1	$\frac{\text{M2 for}}{\frac{85}{280}} \times 280$
		280 – "42"			M1	dep 100
			238		A1	cao
	(ii)	$\frac{24}{0.15}$ or $24 \times \frac{100}{15}$		3	M2	for $\frac{24}{0.15}$ or $24 \times \frac{100}{15}$
						M1 for $\frac{24}{15}$ or 1.6
			160		A1	cao
	(b)	2 + 3 or 5		3	M1	5 may be denominator of a fraction or coefficient in an equation such as $5x = 320$
		$\frac{320}{5}$ or 320 ÷ "5" or 64 or $\frac{7}{5}$ oe			M1	dep
			448		A1	Also award for 128: 192: 448
						Total 9 marks

6	(a)(i)	$\angle ABC = 68^{\circ} \text{ or } \angle BCD = 112^{\circ}$		4	M1	May be stated or marked on
						diagram
			68		A1	cao
	(ii)	360 - (67 + 112 + "68" + 74)			M1	
			39		A1	ft from their (a)(i) Award 2 marks if the answer to (ii) is 107 – answer to (i)
	(b)	$(5-2) \times 180 \text{ or } 3 \times 180 \text{ or}$ $(2 \times 5-4) \times 90 \text{ or } 6 \times 90 \text{ or}$ 360+180 or (180-67)+(180-112)+ (180-68'')+(180-74)+ (180-39'') or 113+68+112+106+141		2	M1	Condone 1 incorrect interior angle
			540		A1	Cao
						SC: Award B1 for answer of 108
						Total 6 marks
					•	
7	(i)		$-1 \le x < 3$	4	B2	B1 for either $-1 \le x$ or for $x < 3$ as a final answer
	(ii)		-1 0 1 2		B2	B1 for 4 correct and 1 wrong or for 3 correct and 0 wrong
						Total 4 marks
8		$5.2^2 + 3.8^2$ or 27.04 + 14.44 or 41.48		3	M1	for squaring and adding
		$\sqrt{5.2^2 + 3.8^2}$			M1	(dep) for square root
			6.44		A1	for answer rounding to 6.44
						Total 3 marks

9	3x + 32 = 87 - 2x		4	M1	for $3x + 32 = 87 - 2x$
	5x = 55 or $5x - 55 = 0$ or			M2	for correct rearrangement with x
	5x = 87 - 32 or				terms on one side and numbers
	3x + 2x = 55				on the other AND correct
					collection of terms on at least one side or for correct collection to 2
					terms
				М1	Commo
					for correct rearrangement with <i>y</i>
					terms on one side and numbers
					on the other e.g $3x+2x=87-32$
					3x + 2x - 87 - 32 or
					correct collection and
					simplification of either numbers or
					x terms eg 5x + 32 = 87 or
					5x = a or bx = 55
		11		A1	dependent on at least one M1
		11		Λ1	dependent on at least one MI
					Total 4 marks

10	(a)	15 40 8	37 157 175 180	1	B1	cao	
	(b)		Points correct	2	B1	<u>+</u> ½ sq	
			Curve or line segments		B1	if points are pl within each int correct heights	
	(c)	135 or 135.75 indicated on cumulative frequency graph or stated		2	M1		.75 indicated on quency graph or
			approx 74 from correct graph		A1	frequency graph If M1 not score correct curve 8	ed, ft only from
							Total 5 marks
11		Product of positive integer powers of both 3 and 5 only		2	M1	Powers and/or evaluated eg 1	products may be
			$3^2 \times 5 \text{ or } 45$		A1	Also accept 9	× 5
							Total 2 marks
		,	1	1			
12		$\angle OAP = 90^{\circ} \text{ or } \angle AOB = 64^{\circ}$		3	B1	May be implied by second B1	May be stated or marked on diagram
		$\angle OAB = 58^{\circ} \text{ or } \angle OBA = 58^{\circ}$			B1		ulaylalli
			122		B1	Award full mar answer	ks for a correct
							Total 3 marks

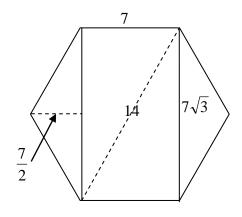
13 (a)	10x + 6y = 18 $21x - 6y = 75$	35x + 21y = 63 $35x - 10y = 125$		4	M1		pefficients of x or y the e or for correct
	21x - 0y - 73	33x - 10y - 123					angement of one equation
							ved by substitution in the
						other	$r = 3 \cdot 3$
	x = 3	y = -2			A1		
	$eg 5 \times 3 + 3y = 9$				M1		on first M1) for substituting ne other variable
			3 –2		A1		lep Award full marks for ct values if at least first M1
						score	
(b)			3 -2	1	B1	ft fro	m (a)
							Total 5 marks
			•				
14	3380 ÷ 1.04 or 3 1.0816	3250 or 1.04 ² or		4	M1		or M2 for 3380 ÷ 1.04 ² oe
	3250 ÷ 1.04				M1		
	3125				A1		
			255		A1	cao	
							Total 4 marks
			•				
15 (a)			67	1	B1	cao	
(b)(i)			113	2	B1	cao	
(ii)	eg sum of opposi 180°	ite angles of a cyclic q	uadrilateral =		B1	oppc"	
							Total 3 marks

16	$6.7^2 + 5.2^2 - 2 \times 6.7 \times 5.2 \cos 117^\circ$		3	M1	
	or 44.89 + 27.04 - (-31.63)				
	103.56			A1	for awrt 104
		10.2		A1	for awrt 10.2 (10.1766)
					Total 3 marks

17 (a)	$y = kx^3$ or $ky = x^3$		3	М1	for $y = kx^3$ but not for $y = x^3$
	250 = 1000k			M1	for 250 = 1000 <i>k</i>
					Also award for $250 = k \times 10^3$
		$y = \frac{1}{4}x^3 \text{ oe}$		A1	for $y = \frac{1}{4}x^3$ oe
					Award 3 marks if answer is
					$y = kx^3$ and k is evaluated as $\frac{1}{4}$
					oe in part (a) or part (b)
(b)	$54 = \frac{1}{4}x^3$		2	M1	dep on at least first M1 in part (a)
		6		A1	ft from $x^3 = 54 \div "\frac{1}{4}"$ oe
					Total 5 marks

18 (a)	$\frac{6}{10} + \frac{3}{10}$		2	M1	
		$\frac{9}{10}$ oe		A1	
(b)	$\frac{6}{10} \times \frac{5}{9}$ oe and no other terms		2	M1	
		$\frac{30}{90}$ oe inc $\frac{1}{3}$		A1 Sample space met marks for a correct otherwise no mark	t answer;
(c)	$\frac{6}{10} \times \frac{3}{9}$ oe or for $\frac{3}{10} \times \frac{1}{9}$ oe or for $\frac{7}{10} \times \frac{3}{9}$		3	M1 SC M1 for $\frac{6}{10} \times \frac{3}{10}$ oe M1 for	$\operatorname{or} \frac{3}{10} \times \frac{1}{10} \operatorname{oe}$
	$\frac{6}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{6}{9} + \frac{3}{10} \times \frac{1}{9} + \frac{1}{10} \times \frac{3}{9} \text{ oe or for}$ $\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{7}{9} \text{ oe}$			M1 $\frac{\frac{6}{10} \times \frac{3}{10} + \frac{3}{10} \times \frac{6}{10} + \frac{1}{10} \times \frac{3}{10}}{\frac{3}{10} \times \frac{3}{10}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}{10}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}{10} \times \frac{3}{10}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}{10}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}} = \frac{\frac{6}{10} \times \frac{3}{10}}{\frac{3}} = \frac{\frac{6}{10}}{\frac{3}} = \frac{\frac{6}{10}}{\frac{3}} = \frac{\frac{6}{10}}{\frac{3}} = \frac{\frac{6}{10}}{\frac{3}} = $	$\frac{3}{10} \times \frac{1}{10} +$
		$\frac{42}{90}$ oe inc $\frac{7}{15}$		A1 Sample space met marks for a correct otherwise no mark	t answer;
					Total 7 marks
19	$2 \times \pi \times 3.4 \times 8.3$ or 56.44π or 177.3		4	M1	
	$\pi \times 3.4^2$ or 11.56π or 36.31			M1	

19	$2 \times \pi \times 3.4 \times 8.3$ or 56.44π or 177.3		4	M1		
	$\pi \times 3.4^2$ or 11.56π or 36.31			M1		
	$2 \times \pi \times 3.4^2$ or 23.12π or 72.63			M1		
		286		A1	for awrt 286	
						Total 4 marks


20 (a)		4.25 16.5	1	B1	for both values correct
(b)		Points	2	B1	Allow $\pm \frac{1}{2}$ sq ft from their table
		Curve		B1	ft from their points if at least 6 points plotted correctly
(c)		0.1 to 0.2 and 3.7	2	B2	B1 for each correct value $\pm \frac{1}{2}$ sq ft from their graph if at least 1 mark scored in (b) tol
(d)(i)		3	3	B1	cao
(ii)	Draw $y = 3x$			M1	from $x = 1$ to at least $x = 3$
		approx 2.7		A1	ft from their graph if at least 1 mark scored in (b) and dep on M1
					Total 8 marks

21	B 6 2 7 S S 4 L L	or 6 2	S 7	3	М2	for complete, correct Venn Diagram (outline, labels and numbers) (accept blank instead of 0 M1 for correct outline and labels and at least 3 non-zero numbers correct excluding 11, 9, 7(in L)
			22		A1	cao
						Total 3 marks

22	$\frac{42}{6}$ or 7	5	B1	
	$\frac{1}{2}\times7^2\times\sin{60^\circ} \text{ or } 21.2(1$ Or $7\times\sqrt{14^2-7^2} \text{ and } \frac{1}{2}\times7\times\sqrt{14^2-7^2}$		M2	Alternative methods M1 for $\sqrt{7^2-3.5^2}$ or $7\sin 60^\circ$ or 6.062 M1 (dep) for $\frac{1}{2}\times7\times"6.062$ " or 21.21 Or M1 for $\sqrt{14^2-7^2}$ and 3.5 M1 for $7\times"12.12$ " and $\frac{1}{2}\times3.5\times"12.12$ " Or Other equivalent methods.
	"21.21" × 6 or 7×"12.12" + 2×"21.21"		M1	dep on preceding 3 marks summing all the areas to make up the hexagon
		127	A1	for answer rounding to 127
				Total 5 marks

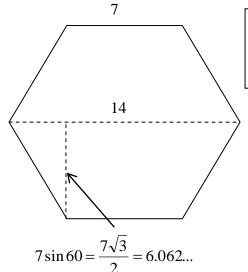
23	(a)	$\frac{x(x+3)}{(2x-1)(x+3)}$		2	M1	for factorising numerator and denominator
			2		A1	cao dep on method mark
	(b)	$y = \frac{x}{2x - 1}$		3	M1	Alternative method $x = \frac{y}{2y - 1}$
		2xy - x = y or x(2y - 1) = y			M1	for isolating $2xy - y = x$ x terms (or y terms in alt method) $2xy - y = xor y(2x-1) = x$
			$\frac{x}{2x-1}$		A1	dep on both method marks. Accept $\frac{-x}{-2x+1}$
						Total 5 marks

ALTERNATIVES FOR QUESTION 22

$$7 \times 7\sqrt{3} + 2 \times \frac{1}{2} \times \frac{7}{2} \times 7\sqrt{3}$$

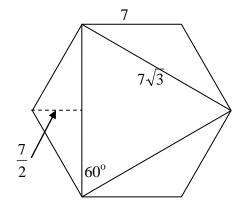
$$7 \times 12.12... + 3.5 \times 12.12$$

$$84.87... + 42.43.....$$


$$\frac{147}{2}\sqrt{3}$$

$$7 \times 7\sqrt{3} + 2 \times \frac{1}{2} \times 7 \times 7 \times \sin 60$$

$$7 \times 12.12... + 3.5 \times 12.12$$


$$84.87... + 42.43.....$$

$$\frac{147}{2}\sqrt{3}$$

$$\frac{1}{2} \checkmark + 14 \times \frac{7\sqrt{3}}{2} = \frac{21}{2} \times \frac{7\sqrt{3}}{2}$$
$$= 10.5 \times 6.06... = 63.65....$$

$$\frac{1}{2} \checkmark +14 \times \sqrt{7^2 - 3.5^2} = \frac{21}{2} \times \frac{7\sqrt{3}}{2}$$
$$= 10.5 \times 6.06... = 63.65....$$

$$\frac{1}{2} \times 7\sqrt{3} \times 7\sqrt{3} \times \sin 60 + 3 \times \frac{1}{2} \times \frac{7}{2} \times 7\sqrt{3}$$

63.65..+ 5.25×12.12.....

63.65...+ 63.65.....

127.3...

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UG036369 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

