

Mark Scheme (Results)

January 2015

Pearson Edexcel International GCSE Mathematics A (4MA0)
Paper 4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG040601
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt -answer which rounds to

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eq algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

IGCSE Maths Jan 2015 - Paper 4HR Mark scheme

Apart from Questions 4, 8, 15, 17 and 20b where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

		<i>J</i>		
Ques	Working	Answer	Mark	Notes
1	$600 \times 67.1 = 40260$ or		3	M1
	67.1 ÷ 82.5 (=0.813)			
	, , , , , , , , , , , , , , , , , , ,			
	"40260" ÷ 82.5 or			M1 dep
	"0.813" × 600			
		488		A1
				SC: B2 for 712
				Total 3 marks

Ques	Working	Answer	Mark	Notes
2 a	$\pi \times 150$ oe		2	M1
		471		A1 awrt 471
b	30 × 60 (=1800) or "471" ÷ 30 (=15.7)		3	M1
	"471" ÷ "1800" or "15.7" ÷ 60			M1 dep
		0.262		A1 for 0.26 – 0.262 or ft from (a)
С	Radius = $x - h$ or $\frac{D}{2} = x - h$ oe		2	M1
		$h = x - \frac{D}{2}$ oe		A1 or $h = \frac{2x - D}{2}$
				Total 7 marks

Ques	Working	Answer	Mark	Notes
3	Angle $DAB = 110$		4	B1 can be implied by angle $DAX = angle BAX = 55^{\circ}$
	Angle $BAX = 110 \div 2 (= 55)$ or			M1
	Angle $DAX = 110 \div 2 (= 55)$ or			
	Angle $AXD = 55$			
	Angle $AXD = 55$ or			M1
	Angle $CBA = 180 - 110 (=70)$ or			
	Angle $ADC = 180 - 110 (=70)$			
		125		A1
				Total 4 marks

Ques	Working	Answer	Mark	Notes
4	2y y = 3 - 6		3	M1 for a complete method to eliminate one variable
	or			(condone one arithmetic error)
	x + 2x = 3 + 12			
				A1 x = 5
		x = 5, y = -1		A1 $y = -1$
				NB: Candidates showing no working score 0 marks
				Total 3 marks

Ques	Working	Answer	Mark	Notes
5 a		25	1	B1 cao
bi		n(n+2)+1	2	B1 for $n(n + 2) + 1$ on answer line or in table
ii		$(n+1)^2$		B1 for $(n+1)^2$ on answer line or in table
				SC: If no marks scored in (i) or (ii) award B1 for $n^2 + 2n + 1$ in (b)
				Total 3 marks

Ques	Working	Answer	Mark	Notes
6 a		16 to 20	1	B1 Accept any unambiguous notation e.g. 16-20
b	$3\times8 + 8\times10 + 13\times18 + 18\times20 + 23\times10 + 28\times4$ or $24 + 80 + 234 + 360 + 230 + 112$ or 1040		4	M1 finds products $f \times x$ consistently within intervals (inc end points) allow 1 error NB. products do not have to be evaluated
				M1 (dep on first M1) –uses midpoints
	$\frac{3 \times 8 + 8 \times 10 + 13 \times 18 + 18 \times 20 + 23 \times 10 + 28 \times 4}{8 + 10 + 18 + 20 + 10 + 4}$ or "1040" ÷ (8+10+18+20+10+4)			M1 (dep on first M1) $\Sigma fx \div \Sigma f$
	1040 - (0+10+10+20+10+4)	14.9		A1 $14.8 - 14.9$ or $14\frac{6}{7}$ Accept 15 if full working shown
				Total 5 marks

Ques	Working	Answer	Mark	Notes
7 a	$\frac{1}{2}(14+20)\times 8$ or		2	M1 for a complete method
	$\begin{vmatrix} \frac{1}{2}(14+20) \times 8 & \mathbf{or} \\ 8 \times 14 + \frac{1}{2} \times 6 \times 8 \end{vmatrix}$			
		136		A1
b	20 - 14 (= 6)		4	M1
	$6^{2} + 8^{2}$ or $36 + 64$ or 100			M1 dep on previous M1
	$\sqrt{('6'^2+8^2)}$			M1 dep on previous M1
		10		A1
				Total 6 marks

Ques	Working	Answer	Mark	Notes
8a	$224 = 2 \times 112 = 2 \times 2 \times 56 =$		3	M1 for at least 2 correct steps in repeated factorisation
	$2 \times 2 \times 2 \times 28 = 2 \times 2 \times 2 \times 2 \times 14$			(may be seen in a tree diagram)
	2×2×2×2×2×7			
				A1 2, 2, 2, 2, 7 (condone inclusion of 1)
		$2^5 \times 7$		A1 $2^5 \times 7$
				NB: Candidates showing no working score 0 marks
b	56 + 32 + 16		2	M1 for any 3 correct distinct factors
	56 + 32 + 14			(excluding 1 and 224)
	56 + 28 + 16			
		eg. 56, 32, 16		A1 correct and have a sum between 99 and 110
		or 56, 32, 14		
		or 56, 28, 16		
				Total 5 marks

Ques	Working	Answer	Mark	Notes
9a		3, 6, 9	1	B1 condone {3, 6, 9}
b		{2,3,4,6,8,9,10}	1	B1 condone omission of brackets
С		{6}	1	B1 condone omission of brackets
d		3, 9	2	B2 cao
				(B1 for one of 3, 9 with no incorrect numbers)
				Total 5 marks

Ques	Working	Answer	Mark	Notes
10a	$\frac{CE}{17} = \frac{22.5}{9}$ oe or 22.5÷9 (=2.5)		2	M1 for correct scale factor
	or 9 ÷ 22.5 (=0.4)			
		42.5		A1 for 42.5 or $42\frac{1}{2}$
b	$\frac{AE}{10} = \frac{22.5}{9} DE = 10 \times 2.5 - 10$		2	M1 for a complete method
	or $10 \times \frac{13.5}{9}$ or 10×1.5 oe			
		15		Alcao
С	$2.5^2 \times 36 \ (=225)$		3	M1 or for a fully correct method to find area of triangle ACE (height of triangle $ABD = 4.2(3)$ height of triangle $ACE = 10.5(8)$)
	"225" – 36			M1 (dep)
		189		A1 cao
				Total 7 marks

Ques	Working	Answer	Mark	Notes
11a		-3	1	B1 cao
b		$2y^3$	2	B2 cao
				(B1 for one correct simplification)
c	$3x^2 - 2yx + 6xy - 4y^2$		2	M1 for 4 correct terms, ignoring signs or for 3
				out of 4 correct terms with correct signs or
				$+4xy - 4y^2$ or $3x^2 + 4xy$
				$3x^2 + 4xy \dots$
		$3x^2 + 4xy - 4y^2$		A1 cao
d			2	M1 for $(4x \pm 1)(x \pm 2)$
		(4x+1)(x-2)		A1 cao
				Total 7 marks

Ques	Working	Answer	Mark	Notes
12a	$5.67 \times 10^{-8} \times 5800^4$		2	M1 for digits 641(6) or 642
		6.42×10^{7}		A1 for $6.4 \times 10^7 - 6.42 \times 10^7$
b	$T^4 = \frac{I}{k}$		2	$M1 T^4 = \frac{I}{k}$
		$T = \sqrt[4]{\frac{I}{k}}$ oe		A1 Allow ±
				Total 4 marks

Ques	Working	Answer	Mark	Notes
13a		p and $1 - p$ on	2	B1 1 $- p$ on LH branch
		the branches		B1 for p and $1-p$ in correct places on RH
				branches
b		p^2	1	B1 accept $p \times p$
С	$p \times (1-p)$ oe or		3	M1 ft from tree diagram
	$p \times \text{``}(1-p)$ '' or			
	$0.2 \times 0.8 \ (=0.16)$			
	$p \times (1-p) + (1-p) \times p$ or			M1 ft from tree diagram
	$p \times "(1-p)" + "(1-p)" \times p$ or			
	$0.8 \times 0.2 + 0.2 \times 0.8$ or			
	2 × "0.16"			
		0.32 oe		A1 cao
				Total 6 marks

Ques	Working	Answer	Mark	Notes
14a	$-4+\sqrt{(-4)^2-4\times1\times(-1)}$		3	M1 for correct substitution – condone one sign
	$x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times (-1)}}{2}$			error in substitution; condone missing brackets;
	2			allow 4 ² ;
				NB. Terms may be simplified
	$x = \frac{4 \pm \sqrt{20}}{2}$			M1 (indep) for $\sqrt{20}$ or $2\sqrt{5}$ or $\sqrt{16+4}$
	2			
		4.24, -0.236		A1 4.235 to 4.24 and -0.236 to -0.24
				dep on M1
	Alternative scheme			M1
	$(x-2)^2 - 4 - 1 = 0$			
	$x = 2 \pm \sqrt{5}$			M1
		4.24, -0.236		A1 4.235 to 4.24 and -0.236 to -0.24
				dep on M1
b		1.24, -3.24	1	B1 ft (accept more than 3 sig figs)
				Total 4 marks

Ques	Working	Answer	Mark	Notes
15a	$\sqrt{1^2+2^2}$ or $\sqrt{5}$		2	M1
		2.24		11
1		2.24		A1 awrt 2.24
b	$\overrightarrow{AC} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} \end{pmatrix}$		3	M1
	or <i>B</i> (4+5, 3+2) or (9, 5)			
	$\overrightarrow{OC} = "\binom{6}{5}" + \binom{4}{2} \left(= \binom{10}{7} \right)$			M1 dep
	or <i>C</i> (4+5+1, 3+2+2)			
		(10, 7)		A1 cao
				CC P1 ((10) (7)
_			3	SC: B1 for (10, <i>y</i>) or (<i>x</i> , 7)
С	$\vec{AE} = \frac{1}{2} \cdot \binom{6}{5} \cdot \binom{1}{6} \cdot \binom{1}{6$		3	IVI I
	$\overrightarrow{AE} = \frac{1}{2} \overrightarrow{AC}$ or			
	$E\left(\frac{4+"10"}{2},\frac{2+"7"}{2}\right)$			
	$\overrightarrow{OE} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \text{"or}$			M1
	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE}$ or E ("7", "4.5")			
	()	$\begin{pmatrix} 7 \\ 4.5 \end{pmatrix}$		A1 cao
				Total 8 marks

Ques	Working	Answer	Mark	Notes
16a	$\angle ADB = 90^{\circ}$		2	M1
	100 00 70	•		
	180 - 90 - 70	20		A1
b	Position of <i>T</i> shown on diagram		3	M1
	$\angle TDC (= \angle DBC) = 50^{\circ}$			M1
	180 – 70 – 50 or	60		A1
	180 - 50 - (180 - 110)			
				Total 5 marks

Ques	Working	Answer	Mark	Notes
17a	$12 - 3\sqrt{2} + 8\sqrt{2} - 2\sqrt{2} \times \sqrt{2}$ or		2	M1 for any 3 terms correct of a 4 term
	$12 - 3\sqrt{2} + 8\sqrt{2} - 2 \times 2$ or			expansion
	$12-3\sqrt{2}+8\sqrt{2}-4$			
		$8 + 5\sqrt{2}$		A1 dep on M1 with all necessary steps shown
b	$\frac{10+3\sqrt{2}}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$ or		2	M1 for a correct method to rationalise denominator
	$\frac{10}{\sqrt{2}} + 3 = \frac{10}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} + 3$			
		$5\sqrt{2} + 3$		A1 dep on M1 with all necessary steps shown
				Total 4 marks

Ques	Working	Answer	Mark	Notes
18	$360 \div 9 = 40 \text{ (per cm sq) } $ or		3	M1
	$360 \div (9 \times 25) = 1.6$			
	" 40 " × 19 oe or			M1 dep
	$7 \times "40" + 6 \times "40" + 6 \times "40"$ or			
	280 + 240 + 240 or			
	19 × 25 × "1.6"			
		760		A1
	Alternative method			M1
	$2a \times 12 + 6a \times 8 = 360$			
	$a = \frac{360}{72} = 5$ and			M1 dep
	$\frac{u-72}{72}$			
	$14 \times 5' \times 4 + 12 \times 5' \times 4 + 4 \times 5' \times 12$			
		760		A1
				Total 3 marks

Ques	Working	Answer	Mark	Notes
19a	$kx = \frac{N}{x}$ oe or $kp = \frac{N}{p}$ oe		3	M1
		$p = \sqrt{\frac{N}{k}}$ oe		A1 $p = \sqrt{\frac{N}{k}}$ or $p = \pm \sqrt{\frac{N}{k}}$
		$q = \sqrt{Nk}$ oe		A1 $q = \sqrt{Nk}$ or $q = \pm \sqrt{Nk}$ oe eg. $q = k\sqrt{\frac{N}{k}}$
b	$\sqrt{\frac{N}{k}} = 2\sqrt{Nk} \text{ or}$ $q = k \times 2q \text{ or}$ $\frac{1}{2}p = kp$		2	M1 ft from (a)
	$\frac{1}{2}p = kp$			
		$\frac{1}{2}$		A1 $k = \frac{1}{2}$, 0.5
				Total 5 marks

Ques	Working	Answer	Mark	Notes
20a			2	M1 $(2x\pm 1)(2x\pm 1)$
		(2x-1)(2x+1)		A1 cao
b	$\frac{4(2x-1)}{(2x-1)(2x+1)} + \frac{1}{4x^2 - 1} [=3] \text{ or}$ $\frac{4(4x^2 - 1)}{(2x+1)(4x^2 - 1)} + \frac{(2x+1)}{(2x+1)(4x^2 - 1)} [=3] \text{ or}$ $\frac{4(4x^2 - 1)}{2x+1} + \frac{1(4x^2 - 1)}{4x^2 - 1} = 3(4x^2 - 1) \text{ or}$		4	M1 multiply all terms by $(4x^2 - 1)$ or correct equation with fractions with a common denominator NB $(4x^2 - 1)$ may be factorised throughout
	$4(4x^{2}-1) + (2x+1) = 3(2x+1)(4x^{2}-1)$ $4(2x-1)+1=3(4x^{2}-1) \text{ oe or}$			M1 correct equation with no fractions
	$4(4x^2 - 1) + 2x + 1 = 3(2x + 1)(4x^2 - 1)$ oe			Wir correct equation with no fractions
	$12x^{2} - 8x = 0 \text{ or } 8x - 12x^{2} = 0 \text{ or}$ $24x^{3} - 4x^{2} - 8x = 0 \text{ or } 8x + 4x^{2} - 24x^{3} = 0$			M1 correct simplified equation with all terms on one side
		$0, \frac{2}{3}$		A1 dep on M2
				Total 6 marks

