Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE In Mathematics (4MA0) Higher Tier Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4MAO_3H_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for
the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Apart from Questions 6b, 19b, 20, 21c, 23 where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1	$\begin{array}{\|l\|} \hline 315 \div 75(4.2) \\ " 4.2 " \times 60(=252) \text { or " } 4.2-4 " \times 60(=12) \end{array}$	4 hours 12 mins	3	M1 M1 A1
2	$\left(\frac{4+9}{2}, \frac{-1+7}{2}\right)$ oe	$(6.5,3)$	2	M1 for one coordinate correct or correct method to find one coordinate or $(3,6.5)$ A1 oe
$\begin{array}{ll} \hline 3 & \text { (a)(i) } \end{array}$ (a)(ii) (b)		$3,6,9$$3,6,9,12,18$E.g. Yes as (12) is not in (set) A	1	B1 B1 no repeats B1 for Yes with reason(s)
4	$\pi \times 18$ oe or $2 \times \pi \times \frac{18}{2}$ oe	56.5	2	A1 for $56.5-56.6$

Question	Working	Answer	Mark	Notes
5	$13+9(=22)$ or $18+4(=22)$ or $40-18(=22)$ $\begin{aligned} & " 22 \times 2 "(=44) \text { or }(22-18)+18+13+9 \\ & (=44) \end{aligned}$	$\frac{9}{44}$	3	M1 M1 A1 for $\frac{9}{44}$ or $0.204(54545 \ldots)$
5 ALT	$\begin{aligned} & \frac{18+x}{40+x}=\frac{1}{2} \\ & 36+2 x=40+x \text { oe } \end{aligned}$	$\frac{9}{44}$	3	M1 M1 (dep) for a correct equation of the form $a x+b=c x+d$ or $x=4$ A1 for $\frac{9}{44}$ or $0.204(54545 \ldots)$

Question	Working	Answer	Mark	Notes
6 (a)		$y(y+1)$	1	B1
(b)	$3 m+21(=12-5 m)$	-1.125	3	M1
	$3 m+5 m=12-21$			M1 For isolating terms in m in a correct equation or ft from $3 m+7$ $=12-5 m$
				A1 for -1.125 or $-\frac{9}{8}$ or $-1 \frac{1}{8}$ oe dep on M1
(c)	$g^{2}+2 g-7 g-14$	$g^{2}-5 g-14$	2	M1 for 3 terms correct or 4 terms correct without signs or $\begin{aligned} & g^{2}-5 g \ldots \text { or } \\ & \ldots .-5 g-14 \end{aligned}$
				A1
(d)		$-4<x \leq 3$	2	B2 or for $-4<x$ and $x \leq 3$ if not B2 then B1 for $-4<x$ or $x \leq 3$ or $-4 \leq x<3$

Question	Working	Answer	Mark	Notes
7	$\begin{aligned} & 96 \div(5+7)=8 \\ & 5 \times " 8 "(=40) \text { or } 7 \times " 8 "(=56) \\ & 0.35 \times " 40 "(=14) \text { or } \frac{3}{14} \times " 56 "(=12) \\ & 0.35 \times " 40 "+\frac{3}{14} \times " 56 " \end{aligned}$	26	5	$\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { M1 } & 0.35 \times 5(=1.75) \\ \text { M1 } & \frac{3}{14} \times 7(=1.5) \\ \text { M1 } & (1.75+1.5) \times " 8 " \\ \text { A1 } & \end{array}$

Question	Working	Answer	Mark	Notes
9	$\tan 52^{\circ}=\frac{R P}{12.7} \quad$ or $\quad \tan (90-52)^{\circ}=\frac{12.7}{R P} \quad$ or $\begin{aligned} & \frac{R P}{\sin 52^{\mathrm{o}}}=\frac{12.7}{\left.\sin (90-52)^{\circ}\right)} \quad \text { or } \quad \frac{\sin 52^{\circ}}{R P}= \\ & \frac{\sin (90-52)^{\mathrm{o}}}{12.7} \\ & (R P=) 12.7 \times \tan 52^{\circ} \text { or } \frac{12.7}{\tan (90-52)^{0}} \text { or } \\ & \frac{12.7 \times \sin 52^{\mathrm{o}}}{\sin (90-52)^{\mathrm{o}}} \end{aligned}$	16.3	3	M1 M1 for a complete method A1 for 16.25-16.3
10	$\begin{aligned} & 2 \times 3.50+4 \times 4.25(=24) \\ & " 24 "-7.60(=16.4) \text { or } \frac{" 24 "}{7.60} \times 100(=315.7 . .) \\ & \frac{" 16.4 "}{7.6} \times 100 \quad \text { or } " 315.7 "-100 \end{aligned}$	216	4	M1 M1 M1 for a complete method A1 for $215.7-216$

Question	Working	Answer	Mark	Notes
11	$\begin{aligned} & \frac{1}{2}(27+21) \times 8(=192) \\ & 2 \times \frac{1}{2}(27+21) \times 8(+) 21 \times 30(+) 10 \times 30(+) 27 \\ & \times 30 \\ & (+) 8 \times 30 \end{aligned}$	2364	3	M1 for area of cross section (but $\left.\frac{1}{2}(27+21) \times 8 \times 30\right)$ is M0 M1 for area of at least 4 faces
12	$\begin{aligned} & 24 \times 113(2712) \text { or } 16 \times 110(=1760) \\ & (24 \times 113+16 \times 110) \div 40 \end{aligned}$	111.8	3	M1 M1 for a complete method A1 accept 112 from a correct method and working

Question	Working	Answer	Mark	Notes		
13	0.012×18000 (=216)		3		for interest for first year or 18216 or 648 or answer of 18 648	$\begin{aligned} & \text { M2 for } 1.012^{3} \\ & \times 18000 \mathrm{oe} \end{aligned}$
	```e.g. \(0.012 \times(18000+\) "216") (=218.592) and \(0.012 \times(18000+\) " 216 " + "218.592") (= 221.215..) and 18000 + "216" + "218.592" + " 221.215.."```			M1	for a complete method	
		18656		A1 Accept answer in range 18655 18656   NB: Answer in range $655-656$ gets M2A0		


Question	Working	Answer	Mark		Notes
14 (a)		$\begin{gathered} 8,28,55,84,102, \\ 113,120 \\ \text { correct cf graph } \end{gathered}$	1	B1	cao
(b)	$\begin{aligned} & (5,8)(10,28)(15,55)(20,84)(25,102)(30, \\ & 113)(35,120) \end{aligned}$	correct cf graph	2	M1	(ft from sensible table i.e. clear attempt at addition)
					for at least 5 points plotted correctly at end of interval or for all 7 points plotted consistently within each interval in the freq table at the correct height
				A1	accept curve or line segments accept curve that is not joined to $(0,0)$
(c)	E.g. readings from graph at $\mathrm{cf}=30$ and $\mathrm{cf}=90$	10-12	2	M1	for evidence of using graph at $\mathrm{cf}=30$ and $\mathrm{cf}=90$
					ft from a cumulative frequency graph provided method is shown
				A1	ft from a cumulative frequency graph provided method is shown


Question		Working	$\frac{\text { Answer }}{g^{6}}$	$\frac{\text { Mark }}{1}$	Notes	
	(b)		$18 e^{3} m^{11}$	2	B2	If not B2 then award B1 for $A e^{n} m^{k}$ with 2 of $A=18, n=3, k=$ 11
	(c)		$8 a^{3} c$	2	B2	If not B2 then award B1 for $F a^{x} c^{y}$ with 2 of $F=8, x=3, y=1$ or $F a^{x} c$ with one of $F=8, x=3$
	(d)		$(x-1)(x+1)$	1	B1	
	(e)	$f^{2}=\frac{1-2 k}{3}$	$k=\frac{1-3 f^{2}}{2}$	3	M1	for removing the square root
		$3 f^{2}-1=-2 k$ or $1-3 f^{2}=2 k$			M1	for isolating term in $k$
					A1	for $k=\frac{1-3 f^{2}}{2}$ oe with $k$ the subject

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{15}{6} \text { oe }(=2.5) \text { or } \frac{6}{15} \text { oe }(=0.4) \text { or } \frac{6}{5} \text { oe }(=1.2) \text { or } \\
\& \frac{5}{6} \text { oe }(=0.83 \ldots) \\
\& \text { e.g. } R P=\frac{15}{6} \times 5(=12.5) \text { or } R P=\frac{5}{6} \times 15 \\
\& (=12.5) \\
\& \text { e.g. } A P=\frac{15}{6} \times 5-5 \text { or } A P=\frac{5}{6} \times 15-5 \\
\& 88 \times\left(\frac{6}{15}\right)^{2} \text { or } 88 \times\left(\frac{5}{5+" 7.5^{\prime \prime}}\right)^{2}
\end{aligned}
\] \& 7.5 \& 3

2 \& | M1 for a correct scale factor |
| :--- |
| M1 for a method to find $R P$ or $A P$ |
| A1 |
| M1 ft from a correct scale factor for corresponding sides from (a) |
| A1 Accept 14 or 14.1 if correct working seen | <br>

\hline 17 \& \[
$$
\begin{aligned}
& \text { e.g. } x=0.02424 \ldots \quad 100 x=2.42424 \ldots \text { or } \\
& 10 x=0.2424 \ldots \quad 1000 x=24.2424 \ldots \ldots
\end{aligned}
$$

\] \& shown \& 2 \& | M1 for identifying two decimals that, when subtracted, leave a terminating decimal |
| :--- |
| A1 for conclusion to given fraction | <br>

\hline
\end{tabular}

Question	Working	Answer	Mark	Notes
18 (a)	$\binom{6}{4}-\binom{4}{-2}$	$\binom{2}{6}$	2	M1 or for $\binom{2}{y}$ or $\binom{x}{6}$ where $x, y$ are numbers
				A1
(b)	$\binom{-8}{4}$	Yes and $\binom{-8}{4}$ with reason	2	M1 $\binom{-8}{y}$ or $\binom{x}{4}$ where $x, y$ are
				A1 e.g. $\binom{-8}{4}$ is a multiple of $\binom{4}{-2}$
				SC B2 for 'Yes and $\mathbf{a}-\mathbf{b}=-2 \mathbf{c}$ '


Question		Working	Answer	Mark		Notes
19	(a)	$\frac{(x+5)}{(2 x+1)(x+5)}-\frac{3(2 x+1)}{(x+5)(2 x+1)}$	$\frac{2-5 x}{(2 x+1)(x+5)}$	4	M1	Allow this first mark for $\frac{x+5-6 x+3}{(2 x+1)(x+5)}$   written as the first step
		$\frac{x+5-6 x-3}{(2 x+1)(x+5)}$			M1	If the denominator is expanded it must be correct for this mark
					A1	
	(b)	$\text { e.g. }(x-1)^{2}>4 \text { or } 6\left(x^{2}-x-x+1\right)>24$	$\begin{gathered} x>3 \\ x<-1 \end{gathered}$		M1	for a correct first step; allow "="
		$x-1>2 ; x-1<-2 \text { or }(x-3)(x+1)>0$   or $\frac{12 \pm \sqrt{(-12)^{2}-4 \times 6 \times(-18)}}{2 \times 6}$ or $\frac{12 \pm \sqrt{576}}{2 \times 6}$			M1	method to solve correct quadratic equation or inequality, allowing one sign error if using the formula
					A1 A1	For $x=3$ and $x=-1$ or for one correct out of $x>3 \quad x<-1$ or for $-1<x<3$ dep M1M1 dep M1M1



Question	Working	Answer	Mark	Notes
21 (a)		4.5 oe	1	B1
(b)		1.5 oe	1	B1
(c)	$y-3=0.5 x$ or $x-3=0.5 y$			M1 starts to find $\mathrm{f}^{-1}(x)$
	$\left[\mathrm{f}^{-1}(x)=\right] 2(x-3)$ oe or $y=2(x-3)$ oe			M1 full method to find $\mathrm{f}^{-1}(x)$
	$\operatorname{[gf}(x)=\frac{14}{2\left(\frac{1}{2} x+3\right)-3} \text { or } \frac{14}{x+3}$			M1 find $\operatorname{gf}(x)$
	$2(x-3)=\frac{14}{2\left(\frac{1}{2} x+3\right)-3} \text { or } 2(x-3)=" \frac{14}{x+3} "$			M1 (Dep on M3)
	e.g. $x^{2}-9=7$ or $2 x^{2}-18=14$	4, -4	6	M1 reduces to a correct quadratic equation of the form $a x^{2}-b=c$   A1 Dep on all method marks


Question	Working	Answer	Mark		Notes
21 (c)	Alternative mark scheme				
	$\mathrm{f}^{-1}(x)=\operatorname{gf}(x)$ therefore $x=\operatorname{fgf}(x)$			M1	
	$\operatorname{gf}(x)=\frac{14}{2\left(\frac{1}{2} x+3\right)-3} \text { or } \frac{14}{x+3}$			M1	find $\operatorname{gf}(x)$
	$\operatorname{fgf}(x)=\frac{1}{2}\left(\frac{14}{x+3}\right)+3$			M1	
	$x=\frac{1}{2}\left(\frac{14}{x+3}\right)+3$			M1	
	e.g. $x^{2}-9=7$ or $2 x^{2}-18=14$	4, -4	6	M1 A1	reduces to a correct quadratic equation of the form $a x^{2}-b=c$ Dep on all method marks



Question	Working	Answer	Mark	Notes
$\mathbf{2 4}$	$\frac{5}{8} \times \frac{4}{7}$ or $\frac{3}{8} \times \frac{5}{7}$ or $\frac{5}{8} \times \frac{3}{7}$		M1   for correct probability of taking   two appropriate counters from X	
	$\frac{5}{8} \times \frac{4}{7} \times \frac{5}{9}$ or $\frac{3}{8} \times \frac{5}{7} \times \frac{5}{9}$ or $\frac{5}{8} \times \frac{3}{7} \times \frac{5}{9}$		M1 $\frac{3}{8} \times \frac{5}{7} \times \frac{5}{9}+\frac{5}{8} \times \frac{3}{7} \times \frac{5}{9}$ oe   for correct probability of one case   where numbers of white and black   counters in X are the same   for a complete method	
M1	$\frac{250}{504}$	4	A1 for $\frac{250}{504}$ oe or $0.496 \ldots$	

